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Fig. 2. Contours of HS+-HS-.  For a large range of 
values of parameters θ and δ, the bounds are relatively 
narrow and lie within a few percent. 

Fig 1. The upper bound and the lower bound  on the diffusion tensor trace, for various 
values of mixing fraction  θ and ratio of diffusitivities δ. 

Why is the trace of the Diffusion Tensor constant across brain? 
 

A. Kumar1, D. S. Tuch1, A. G. Sorensen1 
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INTRODUCTION - Despite widespread observation that the trace of the diffusion tensor is constant across brain tissue, there has been no sufficient 
theoretical explanation for why this is the case [6]. It has been proposed [1] that the constancy of the trace follows from the tightness of the Hashin-Shtrikman 
(HS) bounds [2-5] which were originally derived for the 
effective transport properties of composite materials.  Here, 
we sought to determine whether the HS bounds could 
explain the observed trance conservation in brain tissue. We 
derived bounds on the trace of the diffusion from the 
generalized HS variational principles. These bounds are 
universal, in the sense that they are independent of the 
geometry and distribution of the components within the 
composite.  This is highly significant as we can obtain 
information about the overall transport properties of the 
material, without any information about the shape, 
distribution or geometry of the constituent components.  
Here we justify that these bounds are narrow within the 
brain, across different tissue types implying approximate 
trace conservation. 
 

METHODS - To formally test the hypothesis that the trace is 
constant across the brain we tested the model 

tcons tan321 +−−= λλλ in 4 normal subjects using multiple 

linear regression and the bootstrap method [1]. The DTI data were acquired on a Siemens 3T Allegra MR scanner with b=700s/mm2.To derive the HS bounds 
on the diffusion tensor trace, we modeled brain tissue as a two phase composite, consisting of extracellular space and intracellular space.  White matter and 
gray matter differ in this model, primarily in the volume fraction of the extracellular space to the intracellular space which we denote by the variable θ .  The 
diffusivities of the two components taken separately are assumed to be isotropic and are denoted by α and β , with βα ≤<0 .  The ratio of the diffusitivities 

is defined as δ =α /β, where 10 ≤< δ .  If the upper and lower bounds are denoted by +HS and −HS , with D  being the diffusion tensor, then one can 
show[5] that   
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RESULTS - For the DTI data, we found that the trace conservation model could account for 55% 
(R2=0.55) of the variation in 1λ  given 2λ  and 3λ . To exclude the possibility that the correlation 

was a confound due to eigenvalue sorting bias we randomly permuted the eigenvalues for each 
subject across the voxels and and resorted the eigenvalues. We found that for the perrmuted data the 
regression model could only account for 8% (R2=0.08) of the variation in 1λ , which excludes the 
possibility that eigenvalue sorting bias contributed substantially to the observed correlation. 

The HS bounds on the diffusion tensor trace were found to be tight over a range of 
physiological parameters. From the inequality above and the plots, it can be seen that the bounds are 
comparatively tight (within a few percent) for a large range of values for mixing fraction θ and the 
ratio of diffusivities δ. (Figs. 1 and 2). 
 

 
  
 
 
CONCLUSIONS - Using the HS effective medium bounds, we have derived bounds on the trace of the diffusion tensor in neural tissue. The tightness of the 
bounds can account for the observed conservation of trace across the brain. In general, effective medium theory provides a powerful framework for 
understanding diffusion in brain tissue without need for a model of the tissue microgeometry. 
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