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Introduction 
White matter mapping using Diffusion Tensor Imaging (DTI) has shown to give erroneous results in inhomogeneous voxels containing crossing white matter fibers (1). 
In such voxels DTI usually results with one calculated orientation, most probably different than any of the real fiber orientations. This error affects most of the fiber 
tracing methods by diverting the tract when it passes through inhomogeneous voxels. We propose to use a multiple diffusion tensor approach (2) combined with Φ-
functional regularization to provide multiple orientations per voxel. We test this algorithm both on synthetic data and experimental data. 
 

Theoretical Background 
 Eq. [1] defines the net signal decay for multiple neuronal fiber orientations as the weighted sum of diffusion tensors (2), where the coefficients f are the relative 
weights of each tensor and q includes the diffusion gradient vector. The diffusion tensor, D, is further described in Eq. [2] as its spectral decomposition to eigenvectors 
(U) and eigenvalues (λ). Eq. [3] defines the Φ-functional (3), which regularize the field of multiple tensors (Ω). The first term of the functional is the fitting term. This 
term aims to equate the measured signal decay to the modeled signal decay. The second term of the functional is the regularization term. We assume that for a single 
fiber, the change in U, λ  and f over neighboring voxels is smooth. The minimization of this cost functional L via the Euler-Lagrange Partial Differential Equations 
(PDEs) and the gradient descent procedure, leads to an anisotropic diffusion-like flow, which reduce the orientation variation between neighboring voxels in 
homogeneous regions while keeping significant sharp jumps in orientation (i.e. preserving discontinuities) in transition and/or crossing areas. Regularizing the 
eigenvectors requires special gradient calculation techniques in order to 
take into account the symmetric nature of the decay signal (4). The 
minimization that is realized via this gradient descent flows preserves the 
ellipsoid shape of each tensor, and the anisotropic nature of each ellipsoid. 
This procedure results with multiple orientations describing each voxel. 

 

Methods 
Synthetic data consisted of an image slice in which two fibers aligned 900 to each other crossed in some voxels (see Figure 1). The data included a set of 99 synthetic 
diffusion weighted images (DWI) corresponding to a 99 gradient direction scheme distributed equally over a sphere. The signal in each synthetic DWI was produced 
using Eq. [1] with the following parameters: b value of 1,000 s/mm2 and the three diffusion eigen values were: 1.5x10-3, 0.4x10-3 and 0.4x10-3 mm2/s for each fiber. 
Experimental Data: Excised spinal cords were scanned on a 7T spectrometer. Two sections of a freshly excised cervical pig spinal cord were placed crossing at about 
45 degrees. Diffusion experiments were performed using a PGSE sequence with the following parameters: TR/TE= 2000/200ms, ∆/δ=150/40ms. The field of view 
(FOV) was 5cm, matrix size was 32 x 32 and slice thickness was 15mm. Gradient strength was 0.14 G/mm resulting in b value of 1,725 s/mm2 measured in 31 non-
collinear gradient directions. 
 

Results and Discussion 
Figure 1 shows conventional DTI analysis and the regularization algorithm results for the synthetic data. The diffusion tensor analysis, providing single fiber 
orientation per voxel, failed to reproduce the original fiber direction in areas of crossing fibers. By contrast, in the same voxels, the proposed regularization algorithm 
reproduced the exact orientation of the two fibers. Figure 2 shows the regularization algorithm results for the experimental data. In the crossing region of the two spinal 
cords segments the algorithms nicely reproduced the directions of the fibers in most pixels. The results suggest that the regularization algorithm enables the separation 
of two crossing fibers within the same voxel. Analysis of diffusion tensor data is usually done by minimizing the difference between the signal decay and a model 
containing a single or multiple diffusion tensors (1,2). In inhomogeneous voxels, such fitting without regulating might stumble over many local minima, which in turn 
may cause erroneous results. The regularization constrains the fitted tensor(s) within a voxel to be smooth with neighboring voxels thus reducing the chance of falling 
into local minima in the fitting procedure. This can be viewed as a noise reduction procedure in areas of voxels containing single fiber orientation. This becomes more 
important in voxels containing multiple fiber orientations, where the chance of falling into local minima is high. The combined contribution of the fitting term and the 
regularization terms is allowing change of orientations inside an inhomogeneous area (voxels with multiple fiber orientations) and yet to connect smoothly to 
homogenous areas (pixels with single fiber orientation). Both the synthetic and experimental data show accurate results for voxels containing only one fiber. In such 
voxels the orientation extracted is very similar to DTI, yet much smoother. Achieving smoothness of eigenvalues, eigenvectors and relative weights results in 
smoothness of the fiber delineation. 

 
Conclusions 
We offer an approach for fitting white matter microstructual parameters (as orientation and the diffusion tensor eigenvalues) 
even in voxels containing inhomogeneous white matter bundles. Combining this approach with existing DTI based fiber tracing 
methods may help in delineating fiber tracts even in voxels containing multiple fiber orientations by choosing the fiber 
orientation that will be most suitable for the given tract reaching this voxel.  
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Figure1: synthetic 
data: DTI result (A).  
Regularization 
result, gives 2 
orientations for each 
voxel (B) 

Figure 2:   Real data:  For each voxel. Blue 
arrow represents the   tensor with largest 
partial volume (f>0.5). Red arrow represents 
tensor with second substancial partial 
volume (f>0.3). 
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