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Figure 2. Tensor field regularization on real DT-MRI data. The directions of principal 
eigenvectors are colored in blue and displayed on FA map, acquired from original diffusion 
tensor data as gold standard (a), noisy tensor data (b), and the regularized tensor data (c). 

(a) (b)   
Figure 1. A volume of synthetic noisy tensor fields, before 
(a) and after regularization of tensor field. 
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Introduction 
Diffusion tensor magnetic resonance imaging (DT-MRI) allows the investigation of diffusion differences between tissues in vivo, which reflect the physiological and 
structural properties of tissues[1]. However, DT-MRI measurements are sensitive to noise levels [2]. The level of noise depends on parameters such as acquisition time or 
voxel size. There is an interest in providing post-processing denoising techniques that would relax the acquisition constraints. Some work has been presented for 
regularization of DT-MR images, either for the whole data, or only the principal diffusion direction (PDD) [3]. We propose here a technique that regularizes the whole 
tensor to reduce both the random errors normally associated with noise, and the systematic errors in subsequently calculated values of anisotropy.  
 
Materials and Methods 
Diffusion Data 
The images used for this study were acquired with a 3.0T clinical MRI scanner (General Electric Medical Systems, Milwaukee, WI, USA). Diffusion tensor imaging was 
performed using a single-shot SE-EPI pulse sequence with 24cm×24cm field of view, 35 axial slices, TE/TR 87/8499ms, b value of 1000s/mm2, 13 directions. The 
diffusion tensor eigenvalues (λ1, λ2, λ3 ) and eigenvectors (ε1, ε2, ε3 ), and fractional anisotropy (FA ) maps were calculated from DT-MRI data. 
Data Processing 
Nonlinear anisotropic diffusion scheme, named PM filter developed by Perona and Malik [4], is adopted in our method of tensor field regularization. There are three 
problems which we resolved: firstly, nonlinear smoothing is performed on tensor fields other than on scalar images; secondly, sorting eigenvalues (principal diffusivites) 
by magnitude introduces a bias in their sample mean within a homogeneous region of interest (ROI); thirdly, magnitude sorting also introduces a significant bias in the 
variance of the sample mean eigenvalues [5].  
Because the sign of eigenvectors are indeterminate, arithmetically operation of eigenvectors within an ROI produces a poor estimate, Here we represent each eigenvector 
as a second order dyadic tensor [5], allowing us to calculate a non-linear weighted mean eigenvector unambiguously. So the regularized eigenvector is defined as follows: 
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C represents the “overlaps” between corresponding eigenvalue-eigenvector pairs or dyadics in two 
different voxels. To account for the three-dimensional character of anisotropy diffusion, C are summed 
by the interaction of three eigenvalue-eigenvector pairs in two voxels respectively, and normalized using 
its global maximal value. So Ci,j between two diffusion tensors (i and j ) are obtained: 
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By construction, 0<Ci,j <=1, where 0 indicates no overlap and 1 
indicates complete overlap. After recalculated for the principal 
eigenvector of each tensor in the DT-MRI images, we get the 
regularized PDD map ε1

 r. The second eigenvector ε2
 r

 is projected 
on the plane orthogonal to ε1

r, and we get ε3
r which orthogonal to ε1

r 
and ε2

r. Then the whole tensor fields are all regularized. 
 
Results 
Tensor field regularization was experimented on both synthetic and 
real data. A volume composed of two orthogonal bundles with 
anisotropy equal to 1 was created. Noise was added to the 
directions. Figure 1 shows a part of this volume before (a) and after 
(b) regularization. One can see that directions are properly restored; 
moreover, restoration is efficient even at the borders of the bundles. 
At their interface, the two bundles stay orthogonal, showing good 
improvement in terms of discontinuity preservation. Some real DT-MRI dataset was used as gold standard data set, show in Figure 2 (a). Figure 2 (b) shows the principle 
eigenvectors with tensor field corrupted by noise, and (c) is the regularized diffusion tensor. The filtering process reduced both random and systematic errors, and the 
orientation of eigenvectors are more coherent between neighboring voxels. 
 
Discussion and Conclusion 
Nonlinear anisotropic smoothing is promising in tensor field regularization. Sorting eigenvalues by magnitude introduces a bias and magnitude sorting also introduces a 
significant bias, which can be quantitatively evaluated by the calculation of the “overlap” between eigenvalue-eigenvector pairs. Using the interaction of whole 
eigenvalues and eigenvectors can perform better than only using largest eigenvalue and principal eigenvector. With regularized tensor field, we can get more accurate 
fiber tracts with a simple tractography method. In summary, we presented a regularization process for DT-MRI images that restores the whole tensor field using nonlinear 
anisotropic diffusion scheme. Results demonstrate that tensor field regularization using nonlinear smoothing is satisfied and reproducible. These effects are of particular 
importance when DT-MRI is used for connectivity analysis of fiber tracts[6]. 
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