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Introduction: In a free medium diffusion is a gaussian process resulting in an attenuation, S/So, of the NMR signal according to bDeSS −= 0
(where D is the diffusion 

coefficient and b the diffusion weighting) In biological tissues, however, diffusion becomes a much more complex phenomenon due to effects of restriction, 
compartmentation, active and passive transport, flow, tortuosity, ... and the above relationship is only a coarse approximation1. At low b values (0-200 s/mm2) flow and 
IVIM2 affect this linear behavior, and as we go at higher b values, the nature of the signal decay clearly deviates from the mono-exponential model3. For a two 

compartment no-exchange model the NMR diffusion signal decays as: 
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Ds the fast and slow diffusion coefficients. As the fast diffusion dominates at early b’s, we must probe far into b values to retrieve information on the slow diffusion 
component. However, as we approach noise level, the rician nature of signal distribution in amplitude MR images is more clearly present. Rician distributed noise has a 
non null mean which introduces a bias in the data that can be seen as a very slow Ds diffusion constant. In fast diffusing regions of the brain, all signal may be lost 
before we attain the highest b value. If these final points are to be included in the computation, a gaussian assumption fit will obtain biased results, especially for Ds 
trying to accommodate the noise data. The question is how strong is this bias for current hardware, and whether it is possible to reduce it while still retrieving the 
maximum possible information of the diffusion decay. We have implemented a rician noise assumption fit, and a noise cut-off criterion. We have obtained that 
including data below noise level in a gaussian fit gives biased results while a rician based fit resists better to noise contamination. If we implement this noise cut-off in 
both fits results are similar although gaussian fitted Ds are systematically lower than those rician fitted, as expected. 
Material and Methods: For gaussian distributed data, the expectation value and the 
variance of the measured data, correspond to the experimental mean and the square root of 
the standard deviation. However, for a rician distributed data expectation value only 
approaches experimental mean at high SNR ( ~ 6). This introduces a bias in the measured 
value4. We performed two non linear least square fits (Levenberg-Marquardt) based on the 

minimization of the function [ ]( )∑ −= 2)( MEAxf , where A is the physical amplitude 

of the signal (S), M is it’s measured value and E[M] the expectation. In the first case, noise 
contamination was considered to be gaussian and E[M] = M that corresponds to the 
maximum likehood estimator. Noise level was taken into account dividing by standard 
variation inside sum. In the second case, we assumed a rician model for the noise and 
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−  where I0 and I1 stand for the zeroth 

and first order modified Bessel functions of the first kind. This corresponds to a generalized 
χ

2 and can be used to asses a goodness of fit, or to assess confidence boundaries on fitted 
parameters.  
To test the importance of eliminating high diffusion weighted data from fast diffusion 
pixels, a non-parametric Wilcoxon test was performed pixel by pixel to asses the b value at 
which the signal ceases to be statistically different from noise5 and data at superior b’s were 
discarded. Results, with and without, this pre-fit cut-off test are presented. 
Acquisitions were performed on  a 1.5T (GEMS, USA), with gradients up to 40 mT/m on 
one volunteer who gave informed written consent. TE = 124 ms, cardiac gating was used 
(TR =2 RR). Resolution was 1.875 x 1.875 x 5 mm3 giving a mean SNR of 24. 128 linearly increasing diffusion gradient values were applied (direction XY) and 
repeated 4 times. Diffusion times δ/∆ = 39/ 46 give a b from 0 to 6800 s/mm2. Acquisition time was about less than 20 min. Diffusion tensor (b = 1000 s/mm2 and 55 
directions) and T1 weighted SE images were acquired for anatomical reference. Eddy currents could only be corrected between T2 images6, since much signal is lost on 
the heavily diffusion weighted images. Long time constant eddy currents were corrected, and the same correction were applied on all diffusion weighted data. Data 
corresponding to b values 0-200 were discarded to avoid IVIM contamination. 
Results and Discussion: Results for the most sensible of the parameters, Ds, are presented in figure 1. Comparing both gaussian fits, with and without cutoff the noise 
contamination is clearly visible. Fast diffusion regions as cortex or parallel white matter show artificially slower Ds when cut-off is not applied. Fitted values coincide 
only in regions where signal is significant until high b values, therefore not polluted by noise. For the rician fit, even if differences between cut-off and no cut-off are 
slight and drown on noise level, they are also statistically significant although with lower α (data not shown). Rician fit is not completely immune to noise biasing. 
Comparing both fits, we can observe that even if rician noise contamination is reduced through the use of a noise cut-off, Ds values are still lower for the standard fit 
(table 1). Differences have been found statistically significant for the ROI shown (α = 0.01) and for the whole brain (α = 0.001). 
The high values computed for the fast coefficient (for both gaussian and rician fit) may be explained by the fact that at these points signal decays very rapidly and not 
enough points are fitted to correctly obtain the result.  

 Grey Matter White Matter parallel White Matter perpendicular 

Fit type 
ff Df 

10-3 mm2/s 
Ds 

10-3mm2/s 
ff Df 

10-3 mm2/s 
Ds 

10-3mm2/s 
ff Df 

10-3 mm2/s 
Ds 

10-3mm2/s 
Gauss no cut-off 0.71±0.14 1.10±0.23 0.23±0.11 0.81±0.03 1.27±0.08 0.19±0.031 0.74±0.06 1.065±0.19 0179±0.07 

Gauss cut-off 0.61±0.21 1.20±0.28 0.30±0.17 0.64±0.20 1.79±0.71 0.38±0.20 0.64±0.20 1.79±0.71 0.38±0.12 
Rice no cutoff 0.61±0.20 1.17±0.23 0.37±0.16 0.73±0.09 1.38±0.28 0.33±0.09 0.68±0.17 1.08±0.19 0.24±0.15 

 
 

Conclusion:  Rician distribution of noise in magnitude images introduces bias in fitted parameters for a bi-exponential diffusion analysis. It is possible to avoid some of 
the major effects of this bias by correctly accounting for the noise distribution, namely by carefully eliminating lost signal data prior to fit. Even though good initial 
SNR is the best thing in diffusion experiments, use of optimized techniques as presented here can be the next best thing. Correct and solid measumerents are a key issue 
in the open debate of in vivo diffusion MRI interpretation. 

References: 1. Le Bihan, NMR in Biomed, 8:375, 1995 2. Le Bihan et al, Radiology 161, 1986 3. Clark et al, MRM 44 2000 4. Karlsen et al, MRM 41, 1999 5. Meca et 
al, submeeted 12th ISMRM meeting 6. Jezzard et al, MRM 39, 1998 

Tab 1: Results are shown for 3 different ROI’s in the brain. Error quoted is standard deviation inside ROI. Grey matter was taken from temporal right hemisphere, 
and parallel and perpendicular white matter are taken from optic radiations in the right and left hemisphere respectively at same height. 

Figure 1: Top: Ds maps: gaussian fit without noise cut-off, gaussian 
with cut-off and rician  without cut-off (10-3 mm2/s and direction XY). 
Bottom: Anatomy, FA-RGB coded and maxbv, last b value(s/mm2) 
where signal is still significantly different from noise. 
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