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Introduction

The constraints of unpredictable task performance among some patient populations often produce paradigms with sparse distribution
of desired cognition events in task-locked event-related FMRI of patients [1]. This situation could arise, both from having to design stimulus
paradigms with long inter-stimulus intervals (1Sls) and from incorrect or no task performance by the patients. Since the detection/estimation
power of FMRI paradigms depend on the density of brain activation events in FMRI time-series [2], paradigms with sparsely distributed
activation events can suffer from low FMRI SNR. Filtering methods have been demonstrated to increase FMRI SNR [3]. However filtering aters
the underlying FMRI noise structure and inferences made using white-noise assumptions are rendered invalid. In this study, a randomization test
(RT) designed to make non-parametric inferences on filtered FMRI time-series is presented.
M ethods

One non-fluent male aphasia patient, with left hemisphere stroke was scanned on a 3T GE LX scanner. Scanning parameters. 1-shot
spiral gradient echo sequence [4]; 32 4-4.5 mm sagittal slices covering the whole brain, TR/TE/FA= 1660ms/18ms/70°, 3mm x 3mm in-plane
resolution, two 161-image runs (session had to be aborted after two runs). Written informed consent was obtained. The patient was asked to
generate single word responses to a series of semantic category cues. The inter-stimulus interval was varied pseudo-randomly between 24.9, 26.6,
28.2 or 29.8 sec. There were atotal of 18 semantic category cues presented auditorily. The subject responses were monitored and coded with
Cool Edit™ software into two categories, “correct” and “other” responses. There were atotal of 7 “correct” and 11 “other” responses. Analysis
was done with AFNI and Matlab™.
Data Analysis

The two functional runs were registered, detrended of low-frequency drifts and concatenated to give voxe time-series comprised of
322 images. To improve FMRI SNR, the 322-image time-series underwent two levels of wavelet decomposition and the “detail” coefficients
were “soft”-threshol ded. For each voxel, the wavel et-filtered observed voxel FMRI intensity time-series was modeled as the sum of convolutions
of the “correct: and “other” response-locked stimulus vectors and their corresponding best-fit fifteen-lag impulse response functions (IRFs). The
signal due to the “other” responses was regressed out of the FMRI time-series leaving only the “correct” response related signal plus additive
noise. The resultant time-series underwent deconvolution analysis and the activation statistic, the co-efficient of determination of the General
Linear Model (GLM), R*was cal culated. The 8 ISls, obtained from the 7 “ correct” responses (and the initial and final rest periods) were randomly
permuted to give 1000 different stimulus vectors which when input to the deconvolution analysis resulted in a 1000-valued randomization
distribution of R?. Voxelwise non-parametric RT inferences were made based on the position of voxel experimental RP-statistic, R p, in the
randomization distribution of R? for the voxel. Because the probability maps based on the 1000-val ued distribution has a lower limit of p = 0.001,
each voxel’s randomization R-distribution was also fitted to a separate gamma-distribution, to permit extrapolation to lower p-values. Because a
different distribution is fit to every voxe the distribution-independent multiple comparison properties [5] of the raw RT still hold. Probability
maps were converted to equivalent z-score (normal distribution) maps for convenience.
Results and Discussion

R2-map (thresholded at R?> 0.2) generated from deconvolution analysis of wavelet-filtered time-series, of a right sagittal slice
containing the medial frontal cortex is shown in Fig 1 (a). Fig 1(b) shows the corresponding randomization test raw z-score map (thresholded at z
>3.1). The areas of activation in the 2 maps exhibit substantial correspondence. Fig 1 (c) shows wavelet filtered R-map (thresholded at a more
stringent R?> 0.25), exhibiting more localized activation than Fig 1 (a). The raw z-score maps obtained from the 1000-valued RT distribution
cannot achieve greater localization than Fig 1 (b). Fig. 1 (d) illustrates the results of fitting a gammea:-like distribution to the RT distribution. The
z-score map from the gamma-fit to the RT distribution (thresholded at z >= 3.6) is shown in Fig. 1 (d), and is visibly similar to Fig 1 (c). The
robustness of inference estimates obtained by fitting gamma-like density functions to the RT distributions was confirmed by computing exact
40320-valued (all 8! redlizations) RT distribution for a set of “high” threshold (R®> 0.35) voxels as well as “low” threshold (R< 0.02) voxels.
The difference between the raw RT distributions and the gamma-fit distributions were not significant (Kolomogrov-Smirnov difference test p >
0.9999). The results indicate that the RT method introduced is capable of making non-parametric inferences on filtered FMRI time-series data
and the signal detection properties of the associated statistic, z-score are similar to those of the biased RP-statistic obtained from deconvolution
analysis of filtered (and hence non-gaussian noise) time-series. The method is extendable to any filtering scheme and thus opens the opportunity
for use of a number of FMRI SNR increasing procedures, which would otherwise have been unemployable.

Fig 1. R-maps of wavel et-filtered datasets,
thresholded at R2> 0.2 (a). Raw equivalent z-
score map thresholded at z > 3.1 obtained from the
1000-valued RT distribution for each voxd (b).
R2-maps of wavelet-filtered datasets, threshol ded at
R2> 0.25 (c). Equivalent z-score maps obtained
from fitting gamma-like distributions to each
voxel’s RT distribution, thresholded at z > 3.6 (d).

(© (d)

References 1) Gaiefsky M., et al., Soc Neurosci,32:873, 2003. 2) Birn R., et al., Neuroimage, 15:252, 2002. 3) Krueggel F., et al., Neuroimage,
10:530, 1999. 4) Noll D., et d., IMRI 5:49, 1995. 5) Nicholls T., et a., Hum Brain Map, 15:1, 2001.

Proc. Intl. Soc. Mag. Reson. Med. 11 (2004) 1102



	Return to Main Menu
	=================
	2004 Program
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



