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Introduction 
The identification of the structure of the spatial dependence among voxels in the human brain is an important but difficult problem in MRI/fMRI. A popular 

statistical technique to analyze spatial data is based on the use of variograms [1], which analyzes the effect of spatial separation on the observed quantities. If the spatial 
process is stationary, then the spatial covariance function only depends on the spatial distance and parametric model fitting is possible. However, the assumption of 
stationarity is certainly not valid for the spatial image of the whole brain due to the inhomogeneity arising from the presence of three different physical structures in the 
brain (gray matter, white matter and CSF) which gives rise to discontinuity at the boundaries of the surfaces of these three constituents of the brain. However, 
stationarity may be a valid assumption in a segmentation based approach, where the brain is segmented separately into gray matter, white matter and CSF. This makes 
each individual segment more homogeneous so that it is possible to assume stationarity. This however creates additional problems as all the individual segments are not 
simply connected any more. This means there may be holes inside the segments, which are most visible in gray matter. Thus there are pairs of points in gray matter 
which satisfy the following characteristic. For each such pair, the points may be close to one another in terms of the conventional Euclidean distance, but the length of 
the shortest path connecting them through the gray matter is much longer. If the gray matter is considered separately, it may not be appropriate to treat the points in the 
pair to be close to one another in terms of the stationarity of the data. We propose the use of a non-Euclidean distance function, which measures the shortest distance 
between two points from paths that lie entirely within the segmented region, so that the assumption of stationarity remains valid. 

Theory and methods 
Let X(u) be the observed value of a voxel with coordinates u. Then X(u)  may be considered as a spatial random process with a covariance structure Ω. Due to the 

segmentation, it is reasonable to assume that for each individual segment, the process is stationary. We will ignore the spatial trend, if any, for the sake of simplicity. 
From the stationarity assumption, the covariance only depends on the distance between the two points and may be expressed as cov(X(u),X(v))= Ω(d(u-v)), where d is 
the distance function. The covariance function can be obtained from the semi-variogram V(u,v)=0.5E[X(u)-X(v)]2. The semi-variogram can be estimated directly from 
the data and it is possible to perform a parametric model fitting to the semi-variogram as a function of distance (from stationarity). The same fit easily extends to the 
covariance function using the relation V(u,v)=cov(0)-cov(||u-v||). A popular choice for the parametric fit to the semi-variogram is the exponential function 
V(u,v)=ρ+σ2(1-e-d/r), where  σ2 (sill), r (range) and ρ (nugget) are the parameters to be estimated to fit the curve. The quantity d is the distance between voxels with 
locations u and v. Sill σ2, range r and nugget ρ, as well as the trend µ  may be estimated by the non-linear least squares method applied to the estimated semi-variogram. 
It should be noted that by definition the semi-variogram function takes the value 0 when d is 0. But it may not be the case when d is very small but not identically 0. 
This is the reason for the appearance of the nugget in the model. We should also mention that the choice of exponential covariance function is made only for the sake of 
simplicity. There are numerous other models which may give us a better fit.  

We have already mentioned that the conventional Euclidean metric is not an appropriate choice in the present scenario. We now describe how we measure the 
distance function with a non-Euclidean metric. Ideally, the distance function for a pair of points within a segment should be the minimum length of all paths that 
connect the points and lie entirely within the segment. However, it is not feasible from a computational standpoint to calculate such a metric for all possible pairs of 
points in the segment of interest. Instead we make use of the fact that we have a finite number of voxels which may be considered as a subset of a finite rectangular 
graph with nodes at voxel locations. Note that this is only a subset of the rectangular graph due to the missing nodes at locations where there the voxels are missing. We 
can now make it a connected graph by joining adjacent vertical and horizontal nodes. Each single edge is assigned a length of one voxel unit. We can then compute the 
shortest distance between any two points in this graph along the edges [2]. The algorithm can be further refined by including adjacent diagonal edges as well, but this 
comes at a higher computational price and is not performed here. 

Results 
For computational simplicity, instead of the whole brain, we only consider a 256×256 segmented gray matter slice in the sagittal plane from an image acquired 

with a standard SPGR protocol. In Figure 1, we plot the semi-variogram for the data. For very large values of distance, the semi-variogram appears to be unstable. 
There are two reasons behind that. Large distance in general corresponds to voxels which are far apart from one another and predictive ability is expected to be low in 
such a case. More importantly, since we are only considering a single slice, there may be points with large non-Euclidean distances among them which would be 
significantly reduced if the paths are considered in 3D. Variogram analysis using a 3-D data is expected to improve the results significantly. Nevertheless, we observe a 
nice exponential behavior if we restrict ourselves to distances less than 80 voxel units, which is more than sufficient for any sort of prediction involving the data. In 
Figure 2, we plot the semi-variogram restricted to distances less than 80 voxel units and the best nonlinear least square fit of the exponential model. The fit was 
excellent with an R2 value of 0.9431984 which corresponds to a p-value of 0. The estimated values of nugget, sill and range are, respectively, 105.0899, 118.8801 and 
23.70773 . In Figure 3, we plotted the semi-variogram using Euclidean distance which appears to be scattered without a definite structure. 

 
Figure 1. Semi-variogram using non-Euclidean metric      Figure 2. Fitted exponential for distances upto 80            Figure 3. Semi-variogram using Euclidean metric 
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