

# TmDOTMA<sup>+</sup>: A sensitive MR thermometry probe for in vivo applications

S. K. Hekmatyar<sup>1</sup>, A. Babsky<sup>1</sup>, S. K. Pakin<sup>1</sup>, N. Bansal<sup>1</sup>

<sup>1</sup>Radiology, Indiana University, Indianapolis, IN, United States

## Introduction

Non-invasive temperature monitoring has many direct uses in medicine. MR thermometry techniques based on the chemical shift, relaxation rates and molecular diffusion rate of <sup>1</sup>H water signal suffer from poor thermal resolution. Zhu *et al.* [1] and we [2] independently developed a non-invasive MR thermometer based on the temperature dependence of hyperfine shifted <sup>1</sup>H signal of the paramagnetic lanthanide complex, TmDOTA<sup>+</sup>. One potential drawback of TmDOTA<sup>+</sup> is low signal-to-noise ratio. In this study, we evaluate the use of lanthanide complexes of a methyl substituted analog of DOTA<sup>4-</sup>, DOTMA<sup>4-</sup> for MR thermometry. Aime *et al.* [3] have explored the utility of Yb-DOTMA<sup>+</sup> as temperature sensitive imaging probe. DOTMA<sup>4-</sup> has 12 equivalent protons on the four methyl groups and gives three times more intense signal compared to TmDOTA<sup>+</sup>. In addition, the methyl proton signals have longer  $T_2$  and narrower line-widths because of fast free rotation of the CH<sub>3</sub> groups and reduced through-bond paramagnetic contact interaction.

## Experimental

TmDOTMA<sup>+</sup> were synthesized from Ln<sub>2</sub>O<sub>3</sub> (Ln = Pr, Yb, Tb, Dy and Tm) and Na<sub>4</sub>DOTMA. <sup>1</sup>H spectra of the LnDOTMA<sup>+</sup> complexes were acquired in the temperature range 22 to 55°C using a Varian 9.4 T 89 mm vertical bore MR system. <sup>1</sup>H spin-lattice ( $T_1$ ) and spin-spin ( $T_2$ ) relaxation times of the methyl resonances from the five LnDOTMA<sup>+</sup> complexes were measured at 37°C. To determine the effects of pH and Ca<sup>2+</sup>, on the chemical shift of the methyl resonance of the TmDOTMA<sup>+</sup>, the experiments were conducted at 37°C at five different pH values (3 to 11) and five different Ca<sup>2+</sup> concentrations (0 to 3 mM). *In vivo* temperature measurements were performed on subcutaneously (sc) implanted RIF-1 tumor in C3H/HeN mice using a 1 cm diameter surface coil placed over the tumor. 1-2 mmole of TmDOTMA<sup>+</sup> per kilogram body weight was injected through a tail vein. Animal core body temperature was monitored with a rectal fiber-optic temperature probe. The animal temperature was manipulated over temperature ranging from 35 to 40°C by blowing warm air into the magnet bore.

## Results and Discussion

Figure 1 shows the structure and <sup>1</sup>H MR spectra of TmDOTA<sup>+</sup> and TmDOTMA<sup>+</sup> showing H<sup>1</sup> and H<sup>6</sup> or methyl proton signals. The SNR advantage with TmDOTMA<sup>+</sup> is clearly apparent in the spectra. Table 1 shows the chemical shifts, temperature coefficients of chemical shift ( $C_T$ ), line-widths and relaxation times for the methyl resonance from the five complexes. Tb(III), Dy(III), and Tm(III) complexes of DOTMA<sup>4-</sup> show two resonances because of the presence of two conformational isomers. The relative amount of the minor isomer of TmDOTMA<sup>+</sup> is < 4%. The  $C_T$  value is the largest for the methyl signal from TmDOTMA<sup>+</sup>. The ratio of temperature coefficient and resonance full width at half height ( $|C_T|/\text{FWHH}$ ) is also largest for TmDOTMA<sup>+</sup>, therefore, this complex was further evaluated. The methyl proton chemical shifts of TmDOTMA<sup>+</sup> are independent of the pH, Ca<sup>2+</sup> concentration or presence of any blood plasma. The proton  $T_1$  and  $T_2$  values for the methyl resonance of TmDOTMA<sup>+</sup> at 37°C and 9.4 T are 5.3 and 4.1 ms, respectively. These values are approximately two times more compared to the H<sup>6</sup> signal from TmDOTA<sup>+</sup>. These data clearly show the advantages of TmDOTMA<sup>+</sup> over TmDOTA<sup>+</sup>. Figure 2 shows representative *in vivo* <sup>1</sup>H spectra of TmDOTMA<sup>+</sup> from a sc-implanted RIF-1 tumor. The tumor temperature was always lower than the core body temperature. This demonstrates that TmDOTMA<sup>+</sup> allows robust measurement of temperature in sc implanted tumors and other tissue in intact animals.

## Conclusion

The major advantages of TmDOTMA<sup>+</sup> for MR studies include 1) ~60 times more sensitivity to temperature than water and 15 times more than YbDOTMA<sup>+</sup>; 2) more intense signal and longer  $T_2$  compared to TmDOTA<sup>+</sup> [1,2]; and 3) insensitivity to changes in concentration, pH, [Ca<sup>2+</sup>] and presence of other ions and macromolecules. These properties should make TmDOTMA<sup>+</sup> useful for MR thermometry in a wide range of applications.

## References

1. CS Zuo, A Mahmood, AD Sherry. J Mag Res, 151:101-106, 2001.
2. SK Hekmatyar, H Poptani, A Babsky, D Leeper, N Bansal. Int J. Hyperthermia, 18:165-180, 2002.
3. S Aime, M Botta, M Fasano, E Terreno, P Kinchesh, L Calabi, L Paleari, Mag Reson Med 35:648-651, 1996.



**Fig. 1:** <sup>1</sup>H MR Spectra of TmDOTA<sup>+</sup> and TmDOTMA<sup>+</sup> showing H<sup>1</sup> and H<sup>6</sup> or methyl proton signals. The H<sup>1</sup> resonances from both the complexes is set to the same signal intensity demonstrating the SNR advantage with the methyl resonance from TmDOTMA<sup>+</sup>.

**Table 1:** <sup>1</sup>H chemical shifts, temperature coefficients ( $C_T$ ), full-width at half-height (FWHH),  $|C_T|/\text{FWHH}$ ,  $T_1$  and  $T_2$  for <sup>1</sup>H methyl signal from Pr(III), Yb(III), Tb(III), Dy(III) and Tm(III) complexes DOTMA<sup>4-</sup>.

| Lanthanide complex   | <sup>a</sup> Shift ppm | <sup>b</sup> $C_T$ ppm/°C | <sup>c</sup> FWHH ppm | <sup>c</sup> $ C_T /\text{FWHH}$ | <sup>d</sup> $T_1$ ms | <sup>d</sup> $T_2$ ms |
|----------------------|------------------------|---------------------------|-----------------------|----------------------------------|-----------------------|-----------------------|
| PrDOTMA              | 6.80                   | -0.014                    | 0.065                 | 0.210                            | 90                    | 17                    |
| YbDOTMA              | -13.9                  | 0.058                     | 0.063                 | 0.933                            | 59                    | 29                    |
| <sup>e</sup> TbDOTMA | 63.3                   | -0.269                    | 0.90                  | 0.300                            | 3.0                   | 1.3                   |
|                      | 57.5                   | -0.130                    | 0.48                  | 0.273                            |                       |                       |
| <sup>e</sup> DyDOTMA | 73.3                   | -0.233                    | 0.59                  | 0.395                            | 2.2                   | 1.7                   |
|                      | 78.0                   | -0.325                    | 0.93                  | 0.351                            |                       |                       |
| TmDOTMA              | -99.6                  | 0.586                     | 0.43                  | 1.362                            | 5.3                   | 4.1                   |
|                      | -67.1                  | 0.184                     | 0.39                  | 0.473                            |                       |                       |

<sup>a</sup> at 35 °C;

<sup>b</sup> Slope of shift vs temperature data from 22-55 °C.

<sup>c</sup> Absolute value of the ratio of temperature coefficient of chemical shift ( $C_T$  in ppm/ °C) and the FWHH (full width at half height) at 35 °C (in ppm).

<sup>d</sup> Represents the existence of the isomers for each of the methyl group.



**Fig. 2:** Representative *in vivo* <sup>1</sup>H spectra from methyl resonance of TmDOTMA<sup>+</sup> from sc-implanted RIF-1 tumor. The tumor temperature was calculated from the chemical shift of the TmDOTMA<sup>+</sup> methyl proton signal with respect to the water proton signal set to 4.7 ppm. The core temperature was measured using a fibre-optic rectal probe.