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Introduction 
Complete ablation of cancer in the prostate gland under MRI guidance while sparing normal tissues may be facilitated by concurrent transurethral 
high-intensity ultrasound treatment delivery and magnetic resonance thermal (MRT) imaging, which afford real-time control over the ablation 
procedure.  To date, a systematic determination of the optimal parameters such as pixel size in MRT imaging for prostate therapy has not been 
studied.  This is important because MRT imaging differs from anatomical MRI where accurate depiction of sharp tissue boundaries demands high 
spatial resolution.  In MRT imaging the temperature distribution being imaged is slowly varying in space and does not tend to have the sharp edges 
that anatomical images do.  The goal of this work is to refine MRT imaging during treatment with transurethral high-intensity ultrasound by 
determining the optimal MRT imaging spatial resolution to accurately represent realistic temperature distributions, while still maintaining high signal 
to noise ratio (SNR) and short imaging times which allow for high temporal resolution and multiple slice acquisitions. 
Methods 
The approach of this study was to simulate a temperature distribution, Fourier transform it to k-space, add noise, take the inverse Fourier transform, 
and calculate the root mean squared difference between the simulated temperature distribution and the inverse Fourier transform.  Temperature 
distributions of a 90° sectored tubular and a planar transurethral applicator[1] are calculated[2], informed by measured temperature distributions from 
in vivo canine prostate studies.  The SNR of typical prostate studies with 1.25 mm x 0.6 mm pixels was measured from MRT images acquired with 
an endorectal coil on a 0.5T interventional MRI scanner (Signa SP, GE Medical Systems, Milwaukee WI).  The measured SNR range was 
extrapolated to other pixel sizes using the linear dependence of SNR on pixel size with other imaging parameters fixed.  Simulated signals with SNR 
levels in this experimentally relevant range were created by adding white noise to the Fourier transform of the calculated temperature distribution.  
The inverse Fourier transform of the simulated signal was then performed with various lowpass filters to simulate MRT images acquired at different 
image resolutions (i.e. different pixel sizes).  The simulated MRT images with different pixel sizes were compared to the noiseless simulated 
temperature distributions by calculating the root mean squared (RMS) difference between the two.  We defined the overall optimal pixel size to be 
the one that minimized the average RMS difference over the experimental SNR range. 
Results 
Figure 1 is a contour plot of the simulated temperature (°C) distribution of the 90° sectored tubular applicator at 8 MHz.  For this simulation blood 
perfusion is 5 kg m-3 s-1, the ultrasound absorption coefficient, α, is 8 Np m-1 MHz-1, and dynamic changes in blood perfusion and acoustic 
attenuation during accumulation of thermal dose were incorporated, as well as the effects of transurethral and endorectal cooling with ambient 
temperature water.  In Figure 2 the center profile through the heated portion of the simulated temperature distribution from the tubular applicator is 
shown.  The simulated MRT images with 0.5 mm, 1.7 mm, and 6.4 mm pixel sizes are also shown.  Figure 3 is a contour plot of the RMS difference 
for the tubular applicator over a range of pixel sizes and SNR levels.  The measured SNR range is indicated by the straight dotted lines.  As shown by 
the hatched line, high SNR levels allow smaller optimal pixel sizes, while low SNR levels require larger pixel sizes.  For the tubular applicator, the 
optimal pixel sizes within our measured SNR range vary from 1.4 mm to 1.9 mm, and the overall optimal pixel size across the experimental SNR 
range is 1.7 mm.  For the planar applicator optimal pixel sizes range from 0.8 mm to 1.5 mm, and the overall optimal pixel size is 1.2 mm. 

Discussion  
This work provides quantitative justification for the pixel sizes used in MRT imaging.  Small pixel sizes are noisy while larger pixel sizes do not 
adequately represent the underlying heat distribution.  Optimal pixel sizes depend on the underlying heat distribution (heat source, anatomical 
treatment site) and SNR levels (imaging system and parameters).  The SNR advantage of larger pixels cannot be fully realized by retrospectively 
adjusting reconstruction parameters, therefore MRT image acquisition should be adjusted to reflect prospective analysis and optimization. 
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Figure 2: Center profile of temperature distribution.  
Figure 1: Calculated temperature 
distribution(°C) for tubular applicator. Figure 3: RMS difference (°C) 
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