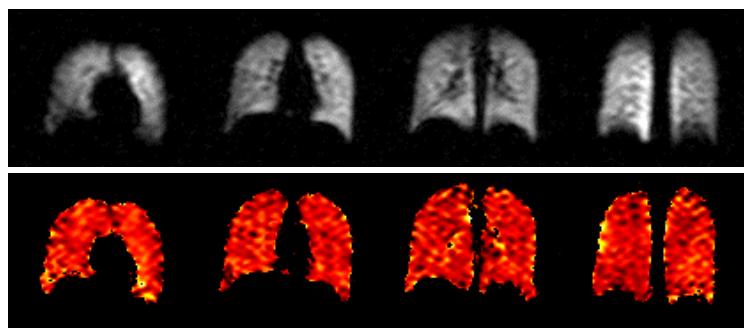


The Apparent Diffusion Coefficient of Xe-129 in the Lung: Preliminary Human Results

J. P. Mugler, III¹, J. F. Mata¹, H-T. J. Wang¹, W. A. Tobias¹, G. D. Cates¹, J. M. Christopher¹, J. L. Missel¹, A. G. Reish¹, K. Ruppert², J. R. Brookeman¹, K. D. Hagspiel¹

¹University of Virginia, Charlottesville, VA, United States, ²Advanced MRI Technologies, Sebastopol, CA, United States

Introduction: The apparent diffusion coefficient (ADC) of hyperpolarized He-3 in the lung has been measured in healthy subjects and subjects with emphysema [1,2]. Initial evidence indicates that He-3 ADC values increase in proportion to the degree of microstructural damage, suggesting that He-3 diffusion imaging may be a sensitive technique for detecting and evaluating structural derangements of the lung. The other hyperpolarized gas, Xe-129, has a self-diffusion constant that is roughly 30 times smaller than that for He-3. Thus, compared to He-3, the length scales probed by Xe-129 are expected to be smaller, and perhaps diffusion imaging with Xe-129 can provide unique information regarding disease-induced structural changes in the lung. Nonetheless, compared to He-3, imaging with Xe-129 has been slower to develop, particularly for human applications. Recent improvements in the polarization levels for liter quantities of Xe-129 have made it practical to perform Xe-129 diffusion imaging in the human lung with spatial resolution similar to that achieved with He-3. We report here preliminary measurements of the Xe-129 ADC in the human lung.


Methods: Hyperpolarized Xe-129 MRI was performed in two healthy subjects (ages 22, 35) using a 1.5T whole-body imager (Magnetom Sonata; Siemens Medical Solutions, Malvern, PA) and a prototype flexible Xe-129 chest RF coil (IGC Medical Advances, Milwaukee, WI). The studies were performed using a protocol approved by our Institutional Review Board; informed written consent was obtained from each subject. Xenon (enriched to 85% Xe-129) was polarized by collisional spin exchange using a modified prototype system (Model 9600 Xenon Polarizer; Magnetic Imaging Technologies Incorporated, Durham NC). By optimizing the sublimation process, which can be a source of substantial polarization loss, and increasing the laser power we now consistently achieve polarization levels of 10-15% for 500-600 ml of hyperpolarized gas. For each study, 500-600 ml of polarized xenon gas was transferred to a Tedlar plastic bag (Jensen Inert Products, Coral Springs, FL). Medical grade N₂ was then added to yield a total volume of 1 liter. The bag was then transported to the MR scanner and inhaled by the subject.

Contiguous coronal Xe-129 diffusion images were obtained at 30-mm intervals covering the whole lung volume using a FLASH-based pulse sequence (TR/TE, 16/11 ms; FA, 10°; matrix, 40 x 64; FOV, 34 x 42 cm; thickness, 30 mm; b-values, 0 and 10 s/cm²) with diffusion weighting in the anterior-to-posterior direction. The means and standard deviations of ADC values for each section and for the sum of all sections were calculated.

Results: The means and standard deviations of Xe-129 ADC values for each section are presented in Table 1. The global (i.e., summed over all sections) ADC values for the two subjects were 0.039 ± 0.016 cm²/s and 0.036 ± 0.014 cm²/s. Figure 1 shows the ventilation (b=0) images and ADC maps for subject 2. Aside from the lower spatial resolution, the ventilation images appeared qualitatively similar to those obtained from healthy volunteers using He-3; the signal from xenon was in general uniformly distributed throughout the lung parenchyma. Similarly, as expected, the ADC maps showed fairly uniform values throughout the lungs.

Table 1. Mean \pm standard deviation of the ADC values [cm²/s] calculated for each section in the two subjects.

Section #	Subject 1	Subject 2
1	0.043 ± 0.020	0.039 ± 0.018
2	0.041 ± 0.015	0.039 ± 0.014
3	0.039 ± 0.014	0.036 ± 0.012
4	0.038 ± 0.015	0.035 ± 0.014
5	0.036 ± 0.015	0.036 ± 0.014
6	0.037 ± 0.022	0.036 ± 0.015

Fig. 1. Coronal Xe-129 ventilation (b = 0) and ADC maps from subject 2. The central 4 of 6 sections are shown.

Discussion: These preliminary measurements suggest that the ADC values for Xe-129 in the healthy human lung are 5-6 times smaller than those for He-3. The mean ADC of 0.04 cm²/s is approximately twice that measured in the lung of a healthy guinea pig [3]. From estimated values for the free diffusion constants of He-3 and Xe-129 in air (0.86 and 0.14 cm²/s, respectively [3]), the ratios of the free-diffusion values in air to the respective ADCs in the healthy human lung are roughly 4 for both gases. We plan to perform Xe-129 ADC measurements in additional healthy subjects, and then investigate the dependence of Xe-129 ADC values on the severity of lung disease, particularly emphysema, compared to the changes seen with He-3 diffusion imaging and high-resolution CT.

References: 1. Saam BT et al. Magn Reson Med 2000; 44:174-179. 2. Salerno et al. Radiology 2002; 222:252-260.
3. Chen XJ et al. Magn Reson Med 2000; 42:721-728.

Acknowledgements: Supported in part by the Commonwealth of Virginia Technology Research Fund (Grant No. IN2002-01) and Siemens Medical Solutions.