PD, T1, and T2 Quantitative MRI Spectroscopy of the Orbit: an Application of the Mix-TSE Pulse Sequence

H. Jara¹, K. Fleming¹, O. Sakai¹

¹Boston University Medical Center, Boston, MA, United States

ABSTRACT

Purpose: To develop a structural MRI technique for the assessment and quantitative characterization of the main structures and tissue types in the human orbit. Methods: Structural segmentation was accomplished by interrogating every pixel as to whether it is contained in a certain PD, T1, T2 Q-MRI space volume and also as to whether it was clustered with other Q-MRI-similar pixels in direct image space. Conclusion: A technique for resolving into structural segments and characterizing by Q-MRI spectroscopy the main components of the human orbit has been developed. The technique is semi-automated requiring only a few numerical inputs from the user.

PURPOSE

To develop a structural MRI technique for the assessment and quantitative characterization of the main structures and tissue types in the human orbit. More specifically the purpose was to develop a quantitative Q-MRI technique for segmenting the extra-ocular muscles and optic nerve and to generate quantitative MRI spectra representing the PD, T1, and T2 distributions.

METHODS

Images were acquired with a 1.5 T superconducting MR imaging system (NT-Intera Philips Medical Systems, N.A.) with a maximum gradient of 23 mT m⁻¹ and a maximum slew rate of 105 mT m⁻¹ ms⁻¹. Mixed turbo spin echo ^(1,2) (mix-TSE) is a multislice 2D pulse sequence that combines (see Fig. 1) the principles of T₁-weighting by inversion recovery and T₂-weighting by multi-echo sampling into

a single mixed MRI acquisition. More specifically, mix-TSE is a fast dual inversion times (TI1, TI2) and dual effective echo times (TE1_{eff}, TE2_{eff}) multipoint pulse sequence, with which four differently T₁- and T₂-weighted images per slice are generated. Mix-TSE is

particularly useful for quantitative MRI because it can be used to generate with a single acquisition, volumetric distributions of PD^(MR), T₁, and T₂ that are spatially self-coregistered, that encompass wide anatomic areas with high spatial resolution and that exhibit

minimum susceptibility artifacts. The pulse sequence consists of two double-echo TSE sequence modules that are applied at different times after the application of an initial inversion pulse. Directly acquired images were transferred to a personal computer in which these were post-processed, first with a Q-MRI algorithm to generate the PD, T1, and T2 maps and then with a Q-MRI based segmentation algorithm with which structural segmentation is accomplished by interrogating every pixel as to whether it is contained in a certain Q-MRI space volume and also as to whether it is clustered with other Q-MRI-similar pixels in direct image space.

RESULTS

The PD, T1, and T2 Q-MRI spectra corresponding to all non-lipid tissues of the orbit of a healthy volunteer are shown in Figure 2. While the PD and T2 spectra are approximately unimodal, the T1 spectrum exhibits separate peaks for CSF (T1>1.2 s), extra-ocular muscles and optic nerves (750<T1<1.2 s), and a muscle-fat partial volume peak with a maximum at T1~600ms. The measured volume of the non-lipid tissues was 5 cc. Compared to facial muscles; extra-ocular muscles are approximately 50% richer in proton density in a healthy subject.

CONCLUSION

A technique for resolving into structural segments and characterizing by Q-MRI spectroscopy the main components of the human orbit has been developed. The technique is semi-automated requiring only a few numerical inputs from the user. The technique could be useful in the diagnosis of orbital myositis, such as Grave's disease and idiopathic orbital inflammation and optic neuritis. REFERENCES

1. Jensen, M. E., Caruthers, S. D., Jara, H., The Internet Journal of Radiology, Vol2N1, [http://www.icaap.org/iuicode?144.2.1.10], 2001.

Jara H. Soto JA. Physical principles and potential applications of MR scanning with the mixed turbo spin-echo pulse sequence. Supplement to 2. Radiology. 2002;225(P):715

Figure 1: Timing diagram of mix-TSE pulse sequence.

Figure 2: Q-MRI spectral analysis of the left orbit of a healthy volunteer. Extra-orbital tissues have been superimposed to a coronal image through the face.