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Synopsis 
Practitioners of biomedical NMR-- while diversified in their backgrounds and  interests--  face nonetheless  one problem in common: the inherent weakness of the 

NMR signal. This limits our spatial resolution, or more simply, the number  of spins we can detect. We therefore pose the questions: what are the current limits of detection, 
and how may they be extended?  Several methods are discussed, including the polarization transfer in noble gases and and of Carbon-13, which promise improvements in 
Signal to Noise Ratio of factors approaching 10,000, and open the way for new and unsuspected applications  

 
Practitioners of biomedical NMR-- while diversified in their backgrounds and  interests--  face nonetheless  one problem in common: the inherent weakness of the 

NMR signal.  In our society, with its emphasis on imaging and localization, this translates  into the quest for ever finer spatial resolution, or in more elemental  terms,  for the 
detection of  ever smaller numbers  of spins. One is then led to ask: is there a fundamental detection limit, never to be transgressed?  The answer,  I hope to demonstrate, is no --
but that there are instead  provisional limits, which  may be approached, over even  overcome,  by increasingly ingenious  experimental methods, operating at  a nexus of 
physics, chemistry,  and biology.  The results to date augur  for new horizons of progress, unimagined even  a decade ago.  

We begin with the basic facts of signal formation: the alignment (i.e. polarization) of nuclear spins in a magnetic field, and the conversion  by a transducer (or 
probe) of spin energy, in the form of quanta (or photons) into an electric current, which our scanner will detect, transform, and display.  The polarization of a specimen is 
determined by the numbers of spins, denoted nw and na, having their magnetic moments aligned with or against the polarizing field -- where  nw + na is the total spin population 
ntot , and nw - na is excess number of spins δn aligned with (i.e. parallel to) the field.  Then  δn/ ntot is called the fractional polarization. The observable NMR signal is 
proportional to  this; and we will later see how  to enhanc e the signal,  by driving  the fractional polarization beyond its normal equilibrium value. 

Each detected spin gives up its energy  in the form of a photon which  is captured by the transducer; but because of thermal agitation, the transducer inevitably adds 
a certain irreducible amount  of electrical noise, depending on temperature.  Our commonest measure of detectability  is then the Signal to Noise ratio (SNR) --usually written 
(1) as the square root of the ratio of detected signal and noise energies , i.e. as •(E/kT), where E is the signal energy in a given voxel (or spectral point), and kT is the Boltzmann 
constant times the absolute temperature.   We then define ,  for any fixed temperature T, the threshold of detectability  to be SNR = 1, and ask what  is required to reach it.   

Now the energy per quantum (or photon, as we shall say) is Planck’s constant h times the frequency ν, so that the ratio hν/kT is just the squared SNR per received  
photon– typically  a small number in NMR, specifically 2 x 10-5 for protons in a field of 3.0 tesla at room temperature (300oK). We then  ask what is the threshold number of 
photons  nt to achieve SNR = 1, i.e. •(nthν/kT) = 1; the answer is obviously nt = kT/hν , or about 5 x 104 in our example.  We show in the appendix that at the minimum, a sample 
of ~ 5 x 109 spins is required to generate this number of photons.  For water protons, this corresponds to a volume of ~ 7.5 x 10-17 litre, or a cubic voxel  0.4 micron on a side.  

The failure to achieve such spectacular resolution is essentially the failure to capture all the available photons in a timely manner; that is, the transducer efficiency 
(defined by Hoult-Richards (2) as the oscillatory magnetic field strength, per square root of power  P absorbed by the probe) is too low.  For example,  with a realistic head coil 
operating at 3.0 tesla and room temperature, we calculate that  1.2 x 1018 water protons are needed to achieve SNR = 1 in a single free induction decay.   This represents a 
volume of about 20 nl,  i.e. a cubic voxel  270 microns on a side, which is 2.4 x 108 times greater than the threshold sample size, as determined above,  from purely physical  
constraints .   
 What then  can be done to improve the SNR and advance towards the detection threshold? Broadly speaking, there are two paths: to increase the fractional 
polarization beyond its equilibrium value,  or to improve the transducer efficiency (from which we do not exclude cooling the transducer,  although this actually moves the 
threshold , in addition to raising SNR). Many methods have been tried and the following list is not exhaustive :  i) polarization transfer: including cross-relaxation via the 
Overhauser effect and Dynamic Nuclear Polarization (DNP) in solids and liquids, hyperpolarization of  noble gases, coherent manipulation of spin dynamics e.g.  INEPT and  
Hartmann Hahn matching,  etc.  (3)   ii) reduction in the size of the transducer --surface coils,  micro-coils  and  NMR microscopy (4 )   iii) lowering the noise temperature of 
the transducer  --including  superconducting and cold-copper  probes (5)   (iv) increasing the detection photon energy  i.e. by double resonance  (6)   (v) exploring highly 
efficient non-inductive transducers: the Superconducting QUuantum Interference  Device (SQUID), and Magnetic Resonance Force Microscopy (MRFM)  (7)  (vi) chemical 
reduction of olefins with molecular para-hydrogen (8) .  The current state of the art is indicated by the observation of the equivalent of 1 x 1012 water protons at room 
temperature in a field of 14 T (4d), and the achievment  (at millikelvin temperatures) of the equivalent sensitivity of 2 or 3 electron spins  by force microscopy (D. Rugar, 
personal communication).  
 We shall confine subsequent discussion to two of the most applicable methods – hyperpolarization of rare gases, and dynamic nuclear polarization – which  share 
several features, and are thus amenable to co-discussion, despite the fact that the former is typically performed in vapor phase, the latter in condensed phases.   Both methods 
achieve polarization transfer by cross-relaxation from an electron spin to a nuclear spin: for example, between the valence electrons of rubidium vapor and the Xe nucleus, or 
between a stable free radical and the 13C nucleus.  In both instances the transfer is driven (pumped) by applying radiation (optical or microwave) to manipulate the populations 
of the electron spin states.  In both, the interaction energy between the active electron and nucleus contains a term of the form: 
 
 
 
where the circumflex denotes a quantum mechanical operator,  and A is a numerical  factor.   The I’s pertain the nuclear spin, the S’s to the electron spin.  The quantities                   
are of particular interest and have a conceptually transparent meaning,  even for the non-physicist.   The plus and minus subscripts denote so called “ladder operators” 
(ascending +, descending -) which perform the function of flipping the orientation of a spin with respect to the polarizing magnetic field.  That is, a “+” operator flips an anti-
parallel spin into the parallel orientation; a “-” operator does the converse.  A product of the two operators (such as we have written) performs a “flip flop” operation on a spin 
pair having opposite orientations; that is, a state with nuclear spin parallel and electron anti-parallel is converted to a state with nuclear spin anti-parallel and electron parallel, 
etc.  These concerted processes of the two spins allow the exchange of energy and polarization, which are governed by rate equations reminiscent of those employed in 
chemical kinetics.  The following analogy, drawn from the mass action law,  is illuminating, although inexact. Polarization transfer resembles a chemical reaction,  for example,  
the alkaline hydrolysis of an amide in aqueous solution, which can be driven past its usual completion point  by removing the volatile ammonia from the system (say by a 
vacuum pump).  The application of microwave or optical radiation to the two-spin (electron-proton) system plays (in this analogy) the role of pumping, and drives the cross-
relaxation to a point not otherwise attainable. The consequences can be spectacular – including SNR gains of up to 104 (or 80 dB), as will be illustrated by the subsequent papers 
in this session.  
 
Appendix: 
The population ratio nw/na at thermal equilibrium is exp(hν/kT) • 1 + hν/kT, for hν/kT <<1 , from which the fractional polarization: δn/ ntot  = (nw / na –1)/(nw / na +1) • hν/2kT.  
Then the threshold number of photons is nt =  kT/hν ; and assuming perfect photon capture gives nt = δn, from which ntot = 2(kT/hν)2.   From the efficiency F we get the signal 
power Ps = {ωVM0F}2/4 where ω is the angular frequency, M0 is the magnetization for and V is sample volume which enables calculation of the SNR with F = 9 x 10-7 for a 
reasonable volume head coil operating at 128 MHz.  
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