MR-Guided Laser Pulmonary-Vein Ablation in Canine Models

E. J. Schmidt^{1,2}, V. Y. Reddy², G. Holmvang², G. Melsky³

¹GE Medical Systems ASL, Boston, MA, United States, ²Cardiology, Massachusetts General Hospital, Boston, MA, United States, ³CardioFocus Inc., Norton, MA, United States

ABSTRACT

Thermal catheter ablation of the pulmonary veins is a common electro-physiologic (EP) procedure that can cure atrial fibrillation. Pre-operative MRI is increasingly used [1] to plan EP interventions, but does not provide real-time positional and thermal-dose information. Using a prototype MRI-compatible laser-ablation balloon catheter, MRI-guided device positioning and subsequent monitoring of heat delivery is possible.

INTRODUCTION

MRI-enabled improvement in the existing thermal ablation procedure in the pulmonary veins can be provided through determination that: 1. proper device positioning at the ostium of the vessels occurs, 2. the heating process is tracked to ensure complete circumferential ablation 3. the heated region is restricted to prevent pulmonary-vein stenosis

MATERIAL AND METHODS

Figure 1 CardioFocus Inc. (Norton, MA) prototype MRI-Compatible laser-balloon ablation catheter inflated, and with laser directed towards distal end. The catheter has multiple lumens, including one for balloon dilation, using pressured D_2O (dark in MRI and thus a good passive marker), and one providing an optical endoscopy channel, allowing visualization of the vein interiors and thus also improving localization. Laser-ablation is a desired ablation technique, because fiber-optic delivery of light does not cause RF interference or heating. A guiding sheath was not MRI-compatible, and therefore was distanced from the ablation region.

The procedure included performing a transseptal puncture procedure followed by advancing the catheter to the proximity of the veins under X-ray fluoroscopy guidance in a normal dog. After transport into the 1.5T CV/i MRI, ECG-gated diagnostic and interventional procedures were initiated.

RESULTS AND DISCUSSION

Catheter positional manipulation and balloon dilation were performed under near real-time guidance (*I*-Drive, GE Medical Systems), as well as with optical endoscopic guidance. Figures 2 and 3 show real-time visualization of balloon deployment and dilation, and figure 4 shows T1-difference thermal imaging of the heat delivery process.

Figure 2 Near-real-time (~1 fps) coronal GRE MRI Images of laserballoon advancement (A), deployment (B), and dilation (C). Note the large susceptibility artifact due to the non-MRI-compatible sheath in lower image. D₂0-filled balloon provides a nice passive marker. TR/TE/ θ =35.7ms/2.2ms/20deg, 24x24 cm FOV, 128x64, 6.0 mm slices.

Figure 3 Breath-held high-resolution 3-D CE-MRA images of the deployed balloon, utilized to confirm balloon positioning: (A) saggital (B) coronal, (C) axial. TR/TE/ θ =6.3ms/1.4ms/45deg, 24x24 cm FOV, 256x192,2.4 mm slices, 36 slices, 1 Nex.

Figure 4 Thermal imaging of laser ablation (~0.5 fps): (A) coronal ECG-gated MRI image, (B) Color T1-difference map, showing bright regions (white arrow), where most of energy is delivered (towards distal and left sides of balloon). TR/TE/ θ =12ms/5.0ms/30deg, 24x24 cm FOV, 256x128, 15 mm slices, 1 Nex. Images were acquired using the GE MR-Tracking interface [2].

CONCLUSIONS

MR-guided laser ablation of the pulmonary veins is feasible and provides improved procedure control. Further work will focus on improved thermal visualization.

REFERENCES

1. Malchano, Z, Reddy, VY et Al. Poster 4885, ISMRM 2003 2. Dumoulin CL, Souza SP, Darrow RD, MRM 29, 411, (1993)