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Introduction 
In perfusion based functional magnetic resonance imaging (fMRI) experiments with arterial spin labeling (ASL),  a series of control images and tag 
images, in which arterial blood is either fully relaxed or magnetically inverted, respectively, is acquired. Typically, the control and tag images are 
acquired in an interleaved fashion, and a perfusion time series can be formed from either a simple pair-wise or  surround subtraction of the control 
and tag images [1] or from a subtraction of sinc interpolated images [2].   Recent  experimental and simulation studies [2,3] have demonstrated that 
the ASL subtraction process tends to whiten the 1/f noise typically observed in fMRI experiments contrast, where the degree of whitening depended 
on the subtraction method used.  In addition the choice of subtraction method has been shown to have an effect on the contamination of the perfusion 
signal by blood oxygenation level dependent (BOLD) weighting of the acquired images.   A qualitative description of the noise whitening process 
and BOLD contamination effects has been provided in [2,3].  Here we present a model of the perfusion fMRI signal processing chain that allows for 
an  analytical evaluation of the various subtraction methods.    
Signal Model 
A signal model of the ASL subtraction process is shown in Figure 1. The measured time 
series y[ n]  is the sum of the interleaved BOLD weighted tag and control images plus 
an additive noise term e[ n ]  with autocorrelation function ρ[ n ] .  The BOLD weighted 
tag images b[ n] M[ n]− q[ n]( ) occur at even indices, while the BOLD weighted control 
images b[ n]M[ n]  occur at odd indices, where b[n] represents the BOLD weighting, 
M[n] is the in-slice magnetization, and q[n] is proportional to the difference in 
magnetization between fully relaxed and  inverted arterial spins that are delivered to the 

imaging slice.  An estimate of the perfusion is obtained as ˆ q [ n] = −1( )n+1
y[ n][ ]∗ g[ n]  

where g[n] is a low-pass interpolation filter that depends on the subtraction method 
used [5].  For pair-wise subtraction,  g[ n] = 1 1[ ]; for surround subtraction, g[ n] = 1 2 1[ ]/2 ;  and for sinc subtraction g[ n] = sinc[ n / 2] [2,4]. 
Expanding the expression for the perfusion estimate yields a sum  ˆ q [ n] = q1[n] + q 2[ n] + qe[n]  of three components.  These are a BOLD-weighted,  

low-pass filtered perfusion component q1[ n] = b[ n]q[ n] /2( )∗ g[ n ] , a high-frequency spurious component 

q2[ n ] = − (−1)n b[ n] M[ n]− q[ n] / 2( )[ ]∗ g[ n], and an  output  noise component qe[ n ] = − (−1)n e[n ][ ]∗ g[ n] .  For most perfusion fMRI experiments, a 

reasonable approximation is that the in-slice magnetization is constant M[ n] ≈ M 0  , and in the absence of background suppression is much greater 

than the perfusion component ( M 0 >> q[n] ), so that the spurious component q2[ n] ≈ − (−1)n b[ n]M 0[ ]∗ g[ n]  is approximately the BOLD signal 

modulated at the Nyquist frequency and then low-pass filtered.  In addition, if the percent change in perfusion is much greater than the percent 
change in BOLD,  an additional approximation is b[ n]q[n] = (1+ ∆b[ n])(q0 + ∆q[n]) ≈ q[n] , which yields q1[ n] ≈ q[ n] /2∗ g[n] .  
Lowpass Filter 
The impact of the lowpass filter is most easily appreciated in the frequency domain.  The discrete-time Fourier transforms of the perfusion and 
spurious components are Q1 ( f ) = G( f ) B( f )∗Q ( f ) / 2[ ] ≈ G( f )Q( f ) /2  and Q2 ( f ) = −G( f ) B( f + 0.5)∗ M ( f )− Q( f ) / 2( )[ ]≈ −M 0G( f )B( f + 0.5)   

where f  denotes normalized frequency. An optimal lowpass filter will minimally attenuate the perfusion spectrum Q( f ) while maximally attenuating 
the modulated BOLD spectrum B( f + 0.5).   Figure 2a shows an example of the normalized spectra Q( f )  and B( f + 0.5) for a block design (4 
cycles of 30 seconds on/off) convolved with a gamma density function. Also shown are the spectra G( f )  for g[ n] = 1 1[ ], g[ n] = 1 2 1[ ]/2 , and 
g[ n] = sinc[ n / 2].  Consistent with the findings of [2], it is clear that the sinc filter provides minimal attenuation of Q( f )  and maximal attenuation of  
B( f + 0.5).  Figure 2b show the spectra assuming a randomized event-related design convolved with the gamma density spectrum. In this case, both 
Q( f ) and B( f + 0.5) have relatively broad bandwidths, and the sinc filter significantly reduces the bandwidth of  the desired perfusion spectrum.  
Thus, if BOLD weighting can be minimized (e.g. with a short echo-time spiral acquisition [4]),  a filter with a large bandwidth (e.g. g[ n] = 1 1[ ])  is 

preferable. The power spectrum of the output noise is ˆ S e ( f ) = S( f + 0.5)G( f )
2
 where S( f )  

is the Fourier transform of ρ[ n ] .   Figure 2c shows S( f )  and S( f + 0.5)  when the input 
noise is the weighted sum of a white noise process and a first order auto-regressive process 
[5].  Note that the 1/f portion of S( f )  is moved to the Nyquist frequency due to the 

modulation inherent in ASL processing. Also shown is G( f )
2
 for the various lowpass 

filters. Consistent with the findings in [3], the sinc filter yields the flattest noise spectra at 
low frequencies, while the g[ n] = 1 1[ ] filter provides reasonable performance over the 
entire frequency range.  
Conclusion: We have presented a signal processing model for the ASL subtraction process 
which is useful for assessing the relative performance of various subtraction methods. For 
block designs, a sinc filter is optimal, while for randomized event-related designs a   
g[ n] = 1 1[ ] filter is preferable if there is minimal BOLD weighting.  
References: [1] EC Wong et al., NMR in Biomed. 10:237-249, 1997 [2]  GK Aguirre et al, 
NeuroImage 15:488-500 (2002). [3] J Wang et al. NeuroImage 19:1449-62 (2003). [4] TT 
Liu et al, NeuroImage 16:269-82 (2002). [5] MA Burock, AM Dale, HBM 11:249-60 (2000).  
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