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Introduction:  Blood oxygenation level dependent (BOLD) functional MRI relies on contrast due to susceptibility differences 
between oxygenated and deoxygenated hemoglobin [1].  To sensitize acquisitions to this BOLD effect, studies are performed at high 
field strength using single-shot acquisitions.  But these parameters also make the acquisitions sensitive to susceptibility differences 
between adjacent structures in the brain, leading to susceptibility artifacts in the images.  The conjugate phase method has been the 
dominant algorithm used to compensate for these susceptibility effects [2,3].  Recently, an iterative reconstruction method has been 
presented that models off-resonance phase during the course of the readout and reconstructs the corrected image via an inverse 
problem approach [4].  However, neither of these correction methods addresses signal loss due to gradients in the field inhomogeneity 
distribution within a voxel.  These gradients cause phase dispersion and cancellation of spins within a voxel.  In this work, we propose 
two methods for correcting for signal dropout due to within-voxel susceptibility gradients; one method uses a piece-wise linear model 
for the local resonant frequency within each voxel, the other method uses an oversampled field map and a corresponding piecewise 
constant model within each voxel. 
Theory: The signal equation for MRI is given by: s(t) = ∫f(r)exp(-iω(r)t)exp(-i2πk(t)⋅r)dr, where s(t) is the baseband signal 
at time t, f(r) is the object to be imaged, ω(r) is the value of the local off-resonant frequency at location r, and k(t) is the k-space 
trajectory.  In [4], both the object and field map were expanded in terms of a limited number of rectangular basis functions, i.e., voxel 
indicator functions. That model fails to account for within-voxel variations in resonant frequency, so within-voxel field gradients still 
result in apparent signal loss. In this work, we expand the field map with a piece-wise linear basis function, having both an off-
resonance value and a slope in x-, y- and z-directions for each pixel location as: 

( )
1

, , rect , ,
N

n n n n n n
n n n n

n

x x y y z z x x y y z z
x y z X Y Z

x y z x y z
ω ω

=

   − − − − − −
= + + +   ∆ ∆ ∆ ∆ ∆ ∆   
∑ , where Xn, Yn, Zn are the x,y,z-gradients across 

the voxel at location rn=(xn,yn,zn) and ∆x,∆y,∆z is the size of the voxel.  Alternatively, we could use a higher resolution field map in 
our system model and enforce the original resolution through an upsampling/downsampling operation.  This would inherently allow us 
to reduce within voxel dephasing through the use of smaller voxels. 
Methods: A simulation study was performed using a 256x256 matrix size simulation object and simulating a spiral acquisition 
for a 64x64 matrix size.  Three 1mm slices were combined to form a 3mm thick slice.  Reconstruction was performed using the 
iterative method of [4] (field corrected), including first order gradients (FC with gradients), and a two-times oversampled approach.  A 
phantom study was performed using a susceptibility phantom that consisted of a water-filled cylinder with the inferior ventral semi-
cylinder section filled with air.  A field map was collected at a 64x64 matrix size for 1.6mm slices.  The data to be reconstructed was 
collected at a 64x64 matrix size with 4.8mm slices.  An undistorted image was acquired using a 4-shot spiral sequence. 
Results: 
 
 

      

      
 
Discussion and Conclusion: 
Including a model of the within-voxel field inhomogeneity distribution can allow us to recover some signal from regions plagued by 
susceptibility-induced signal drop out.  We have presented two approaches, a model that includes first order gradients and an 
oversampled field map technique.  
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Figure 1: Results of 
simulation (a-e) and 
phantom (f-j) studies. Panels 
(a,f) represent the 
undistorted object, (b,g) are 
the uncorrected images, (c,h) 
are the field corrected 
images using piecewise 
constant basis functions for 
the field map, (d,i) are the 
reconstructions with a 
piecewise linear basis, and 
(e,j) are the two-times 
oversampled field map 
reconstructions. 
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