
Figure 1: A sagittal slice of the cervical spine: (a) one of the source images; (b-d) water 
(b), fat (c) and field map (d) using original method; arrows in (d) shows regions that 
converged to the aliased field map; (e) fatsat image with NSA=4 has difficulties in the 
same areas; (f-h) separated water (f), fat (g) and estimated field map (h) using the new 
method.  
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Introduction: Many important clinical MRI procedures require robust fat suppression or water-fat separation. Among various separation techniques, the 3-point 
Dixon method is particularly advantageous in terms of its relative tolerance to field inhomogeneity [1]. If the field inhomogeneity map is known a priori, perfect 
separation of fat and water can be obtained.  In the 3-point Dixon method, the measured data are used to obtain a “field map” along with separated water and fat images. 

The 3-point Dixon method uses echo times (in GRE) or echo time shifts (in SE) such that the phase difference of water and fat is at either 0 or a multiple of 
π at the echo times. An extension has been proposed recently [2] that can work with arbitrary fat-water phase shifts.  This can be used to shorten echo time increments, 
which can help reduce image artifacts. For example, short TRs are necessary with SSFP to prevent banding artifacts and short echo spacing with FSE is needed to 
reduce image blurring. An iterative method is used to estimate the field map from the three echo images. The source images are then corrected with the estimated field 
map, and water and fat images are calculated from a linear least-squares fit. The field map estimation is a critical step in this method. As will be shown, in certain 
circumstances the field map estimated at some pixels may be incorrect, leading to imperfect separation. The aims of this work are to understand this behavior in field 
map estimation and to propose a more robust field map estimation algorithm.  
 
Theory:  Following [2], we model the signals (source images) of each pixel at echo time TEn (n = 1, 2, 3) as: nn TEjfTEj

n eeFWTES πψπ 22 )()( ∆⋅+= , where 

W and F are water and fat components in the pixel. ∆f is the off-resonance frequency of fat relative to water, and at 1.5T, is approximately 220Hz. ψ is the field map 
term at the pixel, which is unknown and must be estimated. 

It can be shown that if the pixel is purely water or fat, there is a natural ambiguity and there are two solutions. If the true solution is (Wt Ft ψ t), the other 
solution is described as (Ft Wt ψ a=ψ t -∆f) for a water pixel, or (Ft Wt ψ a=ψ t+∆f) for a fat pixel. Here, we have used ψ a to denote the undesired solution of the field 
map, which we will call the “aliased” field map. If the initial value of the iterative field map estimation at a pixel is closer to the aliased value ψa than to the true value 
ψt, the algorithm may converge to the aliased solution. In that case, the estimated values for water and fat will be swapped for this pixel. While this problem is most 
severe when a pixel contains only fat or water, in general, the aliased field map value is in the form of either an exact solution or a local minimum. Therefore, one way 
to improve the accuracy of the field map estimation is to start the iterative calculation of the field map with a carefully chosen initial value. 
 
Method:  The original iterative field map estimation is operated independently over all the pixels in the image with initial guess of 0 Hz. In our improved 
method, we start the field map estimation with a more reasonable initial value at each pixel and use the a priori assumption that the field map should not vary rapidly in 
neighboring pixels. These goals can be achieved by using a region-growing algorithm guided by a low-resolution Dixon reconstruction. The idea of low-resolution 
reconstruction has been used previously in similar situations [3]. The algorithm steps are: 
 
1). The source images are smoothed and down-sampled to a low-resolution (eg. 32x32) set of source images. 
2). The previous algorithm [2] is performed on the low-resolution source images to yield a low-resolution field map. 
3). A signal threshold binary mask is generated from the low resolution source images and applied to the low-resolution field map to suppress the noisy estimates in the 
background region. 
4). A pixel with the median value is identified in the signal-thresholded low-resolution field map. This pixel corresponds to a small group of pixels in original resolution 
images. The pixel (in the original high resolution images) with the highest signal among this small group is selected. This pixel is called the starting pixel. 
5). The field map ψ at this starting pixel is estimated using the result of the low resolution fit as the initial value for the iteration. 
6). The field map term, ψ, of a pixel next to the starting pixel is estimated using the field offset value of the starting pixel as the initial value. 
7). This procedure is repeated, growing the region by using the result of the previous pixel as the initial value for a neighboring pixel until all the pixels are estimated.  

The pixel trajectory for region growing is spiral-like, initiated from the starting pixel. It is crucial to start the region growing at a pixel with a correct value. 
As described above, we start at the pixel with the median field map value from the low-resolution reconstruction. This is based on the observation that pixels that 
converge to the aliased field map have very high or very low fitted field map values.  The proposed new method has been tested on 18 data sets from healthy volunteers, 
spanning a range of clinical applications such as knee, ankle, cardiac, cervical, and shoulder imaging. GE 1.5T Signa Twin Speed and GE 3T scanners were used.  
 
Results:  Figure 1 shows the reconstruction of a dataset using the original field map estimation method (b-d) and the new method (f-h). The data is from a 

FSE Dixon acquisition at 1.5T with echo times of [-1.5ms, 0, 1.5ms]. 
In the field map image with the original method (d), pixels in the 
regions indicated by arrows converged to the aliased field map values, 
which were approximately the true field map plus 220Hz in fat 
regions. This is reflected also in the water  and fat images (b, c). The 
product fat saturation image (NSA=4) showed incomplete fat-
saturation at the same location (e) due to field inhomogeneity 
sensitivity. By comparison, the new method successfully resolves the 
ambiguity problem and generates correct water and fat images. The 
new method has worked similarly well in 17 other data sets. 
 
Conclusion: We have shown that there is an intrinsic 
ambiguity in the Dixon technique with short echo time increments, 
which can be resolved by an improved field map estimation method 
proposed here. This robust method increases the method’s immunity 
to field inhomogeneity. 
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