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Introduction: Partially Parallel Imaging (PPI) can reduce the number of phase encoding steps required when using array coils, resulting in speedup, but 
it may also lead to noise amplification in the final image if the coils do not provide sufficiently spatially independent data. Such noise amplification (g-
factor effect1) is recognised as a limiting factor for the maximum speed-up that can be achieved in practice2. Various methods for reducing g-factor 
enhanced noise have been proposed, including adaptive averaging3 and regularised reconstruction methods. These methods decrease noise 
fluctuations at the expense of spatial smoothing or potentially introduce bias from the prior information applied e.g. resolution reduction and/or change in 
contrast. In this study we have investigated the use of joint Entropy to reduce g-factor effects in PPI. Single image entropy has previously been used to 
explore this problem with limited success due to the limited coherent structure remaining in badly artefacted images4. 
Theory: For two images A and B, the joint probability p(a,b) of intensities a in image A and b in image B occurring together can be used to define a joint 
entropy (Ej), defined as the sum over all p(a,b) of p(a,b)log p(a,b). Ej is a measure of the degree to which image B predicts the intensity in image A and 
vice versa5. In this application we take image A to be a PPI reconstructed image and image B to be a reference image, the properties of which we will 
discuss later. The amplified noise in A reduces the shared information content and increases Ej. For regularly undersampled data, the SENSE method 
can be used for PPI reconstruction. In the image domain aliased pixels are separated using linear algebra into regularly spaced families of final image 
pixels. If the corresponding aliased pixels for each coil are assembled in to a complex vector S and the unfolded pixels are written as a complex vector 
X, then X = CS, where C is a (complex) reconstruction matrix that is derived from the coil sensitivities and may take account of any noise correlations. In 
practice noise is present in the images, here we consider only noise in the target images S, then we have S = S’ + dS, where dS is a noise vector and S’ 
is an ideal noise free signal. The amplified noise in the final image is given by dX = CdS. When the g-factor is high, C is ill conditioned so there tends to 
be a single dominant eigenvector.  We can now approximate the elements dX by ds.αλ., where α is the principal eigenvector and λ its eigenvalue and 
ds is a single unknown complex scalar that is to be determined by minimising Ej. 
Method: The method was tested using synthetic images from the MNI brain phantom6. The images were multiplied by candidate coil profiles before 
being transformed to k-space, sub-sampled and then reconstructed again as aliased images. Independent complex Gaussian noise was added to each 
aliased coil image and a SENSE reconstruction performed. Tests were performed with a linear speed-up factor of four using a model linear array of four 
coils with real and Gaussian sensitivity profiles chosen to have width 12.5cm and separation 4cm to exacerbate g-factor noise enhancement.  The 
worst-case signal to noise ratio of approximately 1.5 in the unfolded image compared to 100 in the starting single coil images. The reference images 
were also derived from the MNI brain phantom. The pixels for correction were selected using a threshold on the determinant of the matrix C. This 
process selected only those pixels with a true degeneracy of 4 in this case. The coil sensitivity data was acquired using a combination of surface coil 
images and a body coil image. The joint Entropy was calculated between the body coil reference image and the SENSE image modulated by the body 
coil profile.  
In general Ej is constant for many values of ds except those very close to the true value, this reflects the sparseness of the joint histogram and prevents 
the uses of gradient driven optimisation routines. Minimisation of Ej was achieved using a simple search strategy for ds for each group of aliased pixels 
where the bounds of the search space were set based on knowledge of the noise in the aliased images. All code was written in IDL and computations 
were performed on a Compaq Alpha station. The following trials were performed, in each case the reference image was used for both the SENSE 
processing and the subsequent correction: 
1) A = T2w image, B = identical T2w image.  2) A = T2w image with simulated rectangular lesion, B = T1w image with no lesion. 3) A = T2w image with 
MS lesions,  B = low resolution T1w image with lesions. Results were visually assessed and assessed by subtraction of the known gold-standard image 
to detect residual structure that might indicate image modification. 
Results: In all cases the noise in the PPI image was substantially reduced often to less than that in the neighbouring regions. Lesions were preserved 
even when not present in the reference data and there was no evidence of a change in image contrast or resolution. The residual signals remaining 
after subtraction of the gold-standard image was consistent with Gaussian noise (albeit quantised by the step size set in the search strategy) and did not 
display signals related to the underlying image structure. 
 

   
 
Discussion and conclusion: Joint entropy provides a robust means of removing g-factor amplified noise without modifying intrinsic image properties. 
The reference image provides information only about the likely distribution of tissue classes in the damaged image and so does not need to be the same 
contrast or resolution. Unlike conventional regularisation schemes, the use of joint entropy does not lead to bias in the final result. A key element of this 
method is the use of the principle eigenvector of C, which constrains the allowed distributions of estimated noise across the degenerate pixels. This 
constraint ensures that minimisation of Ej does not change tissue classes of pixels in the PPI image, even in the presence of tissue unclassified in the 
reference image. The ability to apply this method using low resolution reference images indicate that the reference data usually collected to determine 
the coil sensitivities could also serve as a reference for the anatomy.   
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Figure 1: a) original gold-standard noise free image 
from MNI, b) LHS, image after PPI speed-up factor 4 
with simulated 4 coil array, RHS PPI image after 
minimisation of Ej and c) low resolution T1w image 
used as reference image for both PPI and Ej 
minimisation. This example best reflects actual practice 
where the reference data is likely to be of different 
resolution and contrast to the target data. Note that the 
lesions present in the gold image (which were obscured 
by noise in the original PPI reconstruction) are now 
visible and that they are not visible in the reference 
data due to contrast and resolution differences. The 
correction has been applied only to the truly 4 fold 
degenerate “shark tooth” shaped regions. a b c

RHS 

LHS 

Proc. Intl. Soc. Mag. Reson. Med. 11 (2004) 329


	Return to Main Menu
	=================
	2004 Program
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



