The influence of membrane permeability on bi-exponential behavior of diffusion-attenuated MR signal from a single cell

A. L. Sukstanskii¹, J. J. Ackerman², D. A. Yablonskiy¹

¹Radiology, Washington University, St. Louis, Missouri, United States, ²Chemistry, Washington University, St. Louis, Missouri, United States

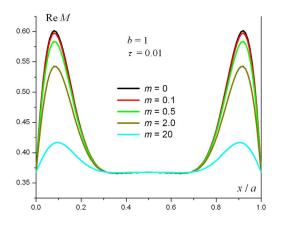
We recently analyzed in detail the behavior of the diffusion-attenuated MR signal in a single compartment with <u>impermeable</u> boundary (1). It was shown that for short diffusion time $\Delta = t_D$, $t_D = a^2/D$ is the characteristic diffusion time (*a* is a compartment size, *D* is the free-diffusion coefficient), the signal dependence on the *b*-value can be approximated to a remarkable degree by the biexponential function $\mathcal{B} = f_1 \exp(-bD_1) + (1 - f_1)\exp(-bD_2)$. The physical underpinning of this approximation is the presence of a strongly inhomogeneous distribution of magnetization at $\Delta = t_D$. Here all spins can be conditionally divided into two populations: one population, comprising spins located far from the boundary, can be considered as unrestricted (fast-diffusing pool); the other population, comprising spins located near the boundary, is restricted due to encounters with the boundary (slow-diffusion pool). The subject of this communication concerns the manner in which a boundary with finite permeability μ "nibbles" at the slow-diffusing pool and affects the bi-exponential behavior of the signal.

For short diffusion times, the MR signal from a single compartment of a size *a* is similar to the signal from a one-dimensional periodic structure of period *a*, which allows an exact analytical solution. In the narrow pulse approximation, we find rather simple expressions for the local magnetization distribution inside the compartment $M(x, \Delta)$ and the net spin echo signal $S(\Delta)$:

$$M(x,\Delta) = \sum_{n} \frac{2iq \exp(-iqx) \cdot \exp\left(-\kappa_{n}^{2}\tau\right) \kappa_{n} \left[\cos\left(\kappa_{n}(1-x/a)\right) - \exp(iq)\cos\left(\kappa_{n}x/a\right)\right]}{\left((qa)^{2} - \kappa_{n}^{2}\right) \left((2m+1)\sin\kappa_{n} + \kappa_{n}\cos\kappa_{n}\right)},$$
[1]

$$S(\Delta) = \frac{2q^2}{m} \sum_{n} \frac{\exp\left(-\kappa_n^2 \tau\right) \kappa_n^2}{\left((qa)^2 - \kappa_n^2\right)^2 \left(2m + 1 + \kappa_n \cot \kappa_n\right)}$$
[2]

where $q = \gamma G \delta$, γ is the gyromagnetic ratio, *G* is a field gradient, δ - is a pulse duration, $\tau = \Delta/t_D$, $m = \mu a/D$, κ_n are non-negative roots of the equation $2m(\cos \kappa - \cos(qa)) = \kappa \cdot \sin \kappa$. In the limit of completely permeable membranes (free diffusion, $m = \infty$), Eq. [1] reduces to the standard homogeneous magnetization $M(x,\Delta) = \exp(-Dq^2\Delta)$. In the opposite limit of completely impermeable membranes, Eq. [2] reduces to the well-known result (2).



As an example, the real part of the function $M(x,\Delta)$ is shown in Fig. 1 for several values of the dimensionless permeability m (time Δ and the *b*-value $b = (qa)^2 \Delta$ are fixed as indicated). Note that for $m \le 0.1$ the magnetization distribution practically coincides with the case of a completely impermeable boundary. The two clearly distinguished maxima in M, making up the slow-diffusing pool, decrease as m increases and it should be expected that the apparent volume fraction of this pool f_1 also must decrease. Modeling the net signal $S(\Delta)$ as a bi-exponential function shows that as m increases f_1 decreases from ~10% at m=0, to 8% at m=1(typical of mammalian cells), to 1% at m=20, the apparent diffusion coefficient D_2 of the fast-diffusing pool approaching D, and D_1 tending to 0.44 D.

We conclude that bi-exponential signal behavior predicted at short diffusion time $\Delta = t_D$ for a single compartment with impermeable boundary [1] is still found in the presence of a boundary with finite permeability in the range expected of biological membranes.

This work was supported by NIH grants R01 NS41519, R01 HL 70037 and R24-CA83060.

^{1.} Sukstanskii, A., Ackerman, J.J.H., and Yablonskiy, D.A. Magn. Reson. Med. 2003;55:735-742.

^{2.} Tanner, J.E., and Stejskal, E.O. J.Chem.Phys. 1968;49:1768-1777.