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Introduction: In the q-space NMR experiment the measured signal, E(q), is the 3-D Fourier transform of the displacement probability 
distribution p(R,∆) (1).  When the direction of q is held fixed but its magnitude is varied, i.e. q = q ˆ r , then E(q) is the Fourier 
transform of the marginal displacement probability distribution, obtained by projecting p(R,∆) onto ˆ r , a result which follows directly 
from the Fourier Slice Theorem.  This projection process creates confusion when E(q) data is used to infer microscopic-scale 
molecular displacements and complicates the definition and meaning of the apparent diffusion coefficient (ADC). 
 
Macroscopic ADC Measurements: Following Callaghan (1), we consider a simple 2-D (or 3-D cylindrically-symmetric) anisotropic 
diffusion process in which we write the measured apparent mean-squared displacement, < R2 >, in terms of the principal diffusivities 
in the parallel and perpendicular directions, D|| and D⊥, obtained by projecting the diffusion tensor, D, along the unit-vector specified 
by ˆ r = (cos(θ),sin(θ))T (see Eq.(1)). Here D is expressed in the principal coordinate frame, ∆ is the diffusion time, and θ is the angle 
between ˆ r  and the eigenvector associated with D||. If the ADC is defined as < R2 > / (2∆), then we obtain the now familiar peanut 
shaped profile of ADC(θ) predicted by Eq. (2). 

R2 θ( )= 2 D|| cos2 θ( )+ D⊥ sin2 θ( )( )∆ 1( ); ADC θ( )= D|| cos2 θ( )+ D⊥ sin2 θ( ) 2( ) 

 
Microscopic Brownian Probabilistic Picture: Consider p(R,∆) obtained by following spin-labeled molecules in the same anisotropic 
medium.  For the same anisotropic diffusion process, p(R,∆) is: 
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where R is expressed in the polar coordinates, (R, θ). Note, for each direction, p(R,∆) can be expressed as a 1-D diffusion process 
along R as in Eq. (4). Equating terms dependent on θ in Eq. (3) and (4), we can define a 1-D diffusion coefficient, De (θ):  
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6( ); ADC θ( )= D|| cos2 θ( ) 7( ) 

In the limit in which D|| is finite and D⊥ = 0, approximating a nematic liquid crystal, we obtain Eq. (6), in which diffusion occurs only 
along the parallel axis while no random motion occurs along any other directions.   

a)      b) 
Discussion: The 1-D limit for the microscopic diffusivity obtained in Eq. (6) should be compared to Eq. (7)—the corresponding 
limiting case for the ADC. Clearly, Eq. (6) predicts an ADC profile that is peanut-shaped when there is uniform, 1-D anisotropic 
diffusion.  Although there is molecular diffusion only along the parallel direction, it appears that diffusion occurs in all directions, 
except along θ = 90°. More important, qualitatively similar behavior is also predicted for ADC(θ) obtained for restricted tubes, such as 
those describing water diffusion in white matter and for other restricted geometries.  
The disparity between the molecular scale and ADC profiles arises because the Einstein equation is used to relate the apparent mean-
squared displacement to the ADC, as in Eq.(1) above.  However, by projecting p(R,∆) along the direction of the diffusion gradient, all 
diffusive motion having a component of the displacement in that direction will be observed.  Therefore, one measures apparent 
displacements in virtually all directions, even when there is diffusion only along one. 
 
Conclusions: If one uses the familiar Einstein equation to define the ADC as the apparent mean-squared displacement divided by 
twice the diffusion time, as in (2), then this ADC will not be consistent with the microscopic diffusivity measured in various 
paradigmatic anisotropic media. Moreover, directionally dependent ADC measurements, ADC(θ), will generally not reflect the true 
microscopic diffusion profile, obscuring the underlying microstructure of a material or tissue. 
 
1. Callaghan PT. Principles of nuclear magnetic resonance microscopy. Oxford: Oxford University Press; 1991. 
2. Tanner JE. Transient diffusion in system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. Journal of 

Chemical Physics 1978;69(4):1748-1754. 
 

Figure 1. (a) Polar plot of De(θ) (solid line) 
and ADC(θ) (dashed line) for a case 
D||/D⊥=7; (b) RMS displacement of the 
diffusing particles as a function of θ, based 
on the Brownian model, Eq.5, (solid line) 
and ADC model, Eq.2, (dashed line). 
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