

# Levels of activated sugars in breast cancer cells reflect metastatic potential as well as cell density. A $^{31}\text{P}$ NMR spectroscopic study of cell extracts.

N. W. Lutz<sup>1</sup>

<sup>1</sup>Arizona Cancer Center, University of Arizona, Tucson, AZ, United States

## INTRODUCTION

Cancer metastases are responsible for the fatal effects of many malignant tumors. At present, it appears to be clear that cell-cell recognition plays a fundamental role in the invasiveness of cancer cells and in their potential to attach to other tissues to form secondary tumors. Oligosaccharides in plasma membrane glycoproteins are important in cell-cell recognition and molecular targeting. Thus, alterations in oligosaccharide metabolism can be expected to affect cell-cell interactions and, potentially, the ability of cancer cells to disaggregate from a primary tumor, to invade surrounding tissue and to attach to a metastatic site. Previous work has shown that intracellular levels of activated sugars (= UDP-hexoses, UDP-Hex) may be correlated with tumorigenicity, malignancy and metastatic potential of cancer cells [1,2], but may also depend on growth conditions, differentiation status and antioxidant resistance [3-5]. This pilot study is aimed at gaining new insight into saccharide metabolism in metastatic vs. non-metastatic breast cancer cell lines, and at exploring the potential of  $^{31}\text{P}$  NMR spectroscopy of UDP-Hex to detect the metastatic potential of breast cancer.

## MATERIALS AND METHODS

**Sample preparation** Two human breast carcinoma cell lines were used: MCF-7 (non-metastatic) and MDAMB-435 (highly metastatic). Cells were grown to ca. 80% or 100% confluence, extracted with perchloric acid and prepared for  $^{31}\text{P}$  NMR spectroscopy as previously described [6].

**NMR spectroscopy**  $^1\text{H}$ -decoupled  $^{31}\text{P}$  NMR spectra were obtained at 202.5 MHz on a 11.7 T Bruker AVANCE DRX500 NMR spectrometer using a broadband probe for 5-mm tubes. The acquisition time AQ was 2.025 s, corresponding to 8k data points, and the sweep width SW was 2 kHz. Spectra were acquired at 4°C over 6-10 h with a repetition time of TR = 13 s to avoid saturation effects.

**Statistics** Two-way ANOVA was used to determine the significance of differences in relative UDP-Hex levels between groups.

## RESULTS

Two distinct UDP-Hex signal groups could be readily integrated, the  $\beta$ -phosphates of UDP-*N*-acetylglucosamine (UDPGlcNAc), and those of other UDP-Hex primarily consisting of UDP-*N*-acetylgalactosamine and UDP-glucose. Relative levels were determined by dividing UDP-Hex $\beta$  by NTP $\beta$  integrals, a quantitation method commonly used in *in-vivo*  $^{31}\text{P}$  NMR spectroscopy [7]. All relative UDP-Hex levels varied as a function of both metastatic potential and cell density (Fig. 1). This was confirmed by two-way ANOVA which yielded *significant interaction* ( $p < 0.05$ ) between the two factors, cell type and confluence, for total UDP-Hex (Fig. 1, top graph) and UDPGlcNAc (data not shown).

## DISCUSSION

Increased UDPHex/NTP values for MCF7 vs. MDAMB-435 cells have been recently reported for perfused cells [8]; however, our work demonstrates that this difference becomes insignificant when cells reach very high densities in culture (ca. 100% confluence). Thus, cell density has a significant effect on the cell type dependence of UDP-Hex accumulation, and conversely, the cell density dependence of UDP-Hex accumulation is significantly affected by the cell type. This interdependence of two (or more) factors, known as statistical interaction, results in large standard deviations for UDP-Hex if factors are not separated (Fig. 1, bottom graphs). Our results suggest that the usefulness of future *in-vivo* assessment of the metastatic potential of breast cancer by  $^{31}\text{P}$  NMR spectroscopy of UDP-Hex, will most likely depend on the growth characteristics of the tumor under investigation.

## REFERENCES

- 1] Sonnewald, U. et al. [1994] *Anticancer Res.* 14: 793-798.
- 2] Beckonert, O et al. [2003] *NMR Biomed.* 16: 1-11.
- 3] Shedd, SF et al. [1993] *NMR Biomed.* 6: 254-263.
- 4] Lutz, NW et al. [1997] *AIDS* 11: 147-155.
- 5] Lutz, NW et al. [2002] *NMR Biomed.* 15: 356-366.
- 6] Lutz, NW et al. [1996] *Magn. Reson. Med.* 36:788-795.
- 7] Podo, F [1999] *NMR Biomed.* 12:413-439.
- 8] Sterin, M et al. [2001] *Cancer Res.* 61:7536-7543.

**Acknowledgment** Support by DOD grant DAMD17-01-1-0474 (to N.W.L.) is gratefully acknowledged.

**Fig. 1** Total UDP-hexoses

Top graph: Filled (empty) squares = 100% (80%) confluence  
Bottom graphs: Pooled samples of different confluence (left) or cell type (right)

