Levels of activated sugars in breast cancer cells reflect metastatic potential as well as cell density. A ³¹P NMR spectroscopic study of cell extracts.

N. W. Lutz¹

¹Arizona Cancer Center, University of Arizona, Tucson, AZ, United States

INTRODUCTION

Cancer metastases are responsible for the fatal effects of many malignant tumors. At present, it appears to be clear that cell-cell recognition plays a fundamental role in the invasiveness of cancer cells and in their potential to attach to other tissues to form secondary tumors. Oligosaccharides in plasma membrane glycoproteins are important in cell-cell recognition and molecular targeting. Thus, alterations in oligosaccharide metabolism can be expected to affect cell-cell interactions and, potentially, the ability of cancer cells to disaggregate from a primary tumor, to invade surrounding tissue and to attach to a metastatic site. Previous work has shown that intracellular levels of activated sugars (= UDP-hexoses, UDP-Hex) may be correlated with tumorigenicity, malignancy and metastatic potential of cancer cells [1,2], but may also depend on growth conditions, differentiation status and antioxidant resistance [3-5]. This pilot study is aimed at gaining new insight into saccharide metabolism in metastatic vs. non-metastatic breast cancer cell lines, and at exploring the potential of ³¹P NMR spectroscopy of UDP-Hex to detect the metastatic potential of breast cancer.

MATERIALS AND METHODS

Sample preparation Two human breast carcinoma cell lines were used: MCF-7 (non-metastatic) and MDAmb-435 (highly metastatic). Cells were grown to ca. 80% or 100% confluence, extracted with perchloric acid and prepared for ³¹P NMR spectroscopy as previously described [6].

NMR spectroscopy ¹H-decoupled ³¹P NMR spectra were obtained at 202.5 MHz on a 11.7 T Bruker AVANCE DRX500 NMR spectrometer using a broadband probe for 5-mm tubes. The acquisition time AQ was 2.025 s, corresponding to 8k data points, and the sweep width SW was 2 kHz. Spectra were acquired at 4°C over 6-10 h with a repetition time of TR = 13 s to avoid saturation effects.

Statistics Two-way ANOVA was used to determine the significance of differences in relative UDP-Hex levels between groups.

RESULTS

Two distinct UDP-Hex signal groups could be readily integrated, the β -phosphates of UDP-*N*-acetylglucosamine (UDPGlcNAc), and those of other UDP-Hex primarily consisting of UDP-*N*acetylgalactosamine and UDP-glucose. Relative levels were determined by dividing UDP-Hex β by NTP β integrals, a quantitation method commonly used in in-vivo ³¹P NMR spectroscopy [7]. All relative UDP-Hex levels varied as a function of both metastatic potential *and* cell density (Fig. 1). This was confirmed by two-way ANOVA which yielded *signifcant interaction* (p < 0.05) between the two factors, cell type and confluence, for total UDP-Hex (Fig. 1, top graph) and UDPGlcNAc (data not shown).

DISCUSSION

Increased UDPHex/NTP values for MCF7 vs. MDAmb-435 cells have been recently reported for perfused cells [8]; however, our work demonstrates that this difference becomes insignificant when cells reach very high densities in culture (ca. 100% confluence). Thus, cell density has a significant effect on the cell type dependence of UDP-Hex accumulation, and conversely, the cell density dependence of UDP-Hex accumulation is significantly affected by the cell type. This interdependence of two (or more) factors, known as statistical interaction, results in large standard deviations for UDP-Hex if factors are not separated (Fig. 1, bottom graphs). Our results suggest that the usefulness of future in-vivo assessment of the metastatic potential of breast cancer by ³¹P NMR spectroscopy of UDP-Hex, will most likely depend on the growth characteristics of the tumor under investigation.

REFERENCES

1] Sonnewald, U. et al. [1994] Anticancer Res. 14: 793-798. 2] Beckonert, O et al. [2003] NMR Biomed. 16: 1-11. 3] Shedd, SF et al. [1993] NMR Biomed. 6: 254-263. 4] Lutz, NW et al. [1997] AIDS 11: 147-155.

5] Lutz, NW et al. [2002] NMR Biomed. 15: 356-366. 6] Lutz, NW et al. [1996] Magn.Reson.Med. 36:788-795. 7] Podo, F [1999] NMR Biomed. 12:413-439. 8] Sterin. M et al. [2001] Cancer Res. 61:7536-7543.

Acknowledgment Support by DOD grant DAMD17-01-1-0474 (to N.W.L.) is gratefully acknowledged.