In vivo ¹³C NMR measurement of activity-dependent malate-aspartate shuttle flux in the brain

P-G. Henry¹, K. Ugurbil¹, R. Gruetter¹

¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Introduction

Carbon-13 NMR spectroscopy can be used to measure a number a metabolic fluxes in the brain (1), including glial and neuronal oxidative glucose consumption, glutamate-glutamine cycle and pyruvate carboxylase (2). The apparent exchange rate between 2-oxoglutarate and glutamate, Vx, has been proposed to reflect the malate-aspartate shuttle and thus depend on cellular energy status (2,3). The goal of this study was to measure changes in malate-aspartate shuttle under different levels of brain activity.

Methods

All experiments were performed on a 9.4T/31 cm horizontal bore magnet (Magnex/Varian). Male Sprague-Dawley rats were infused with $[1,6^{-13}C_2]$ glucose under light α -chloralose (25 mg/kg/h i.v., n=5) and under morphine sulfate (25mg/kg/h i.p., n=5) anesthesia. The rate of ¹³C incorporation into brain metabolites was measured from a 400 µl volume with a temporal resolution of 5 minutes using ¹³C-detected semi-adiabatic DEPT combined with ¹H localization (5). Time series of ${}^{13}C$ spectra were quantified automatically with LCModel adapted for ¹³C NMR (6). Following in vivo measurements, brains were funnel-frozen and extracts were analyzed by high-resolution NMR to determine the isotopic enrichment of metabolites. Blood glucose isotopic enrichment was determined using GC-MS. Time courses of ¹³C label incorporation into glutamate C4, C3, C2, aspartate C2, C3 and glutamine C4, C3, C2 were fitted to a two-TCA cycle model to derive quantitative metabolic fluxes (2).

Results and Discussion

The excellent sensitivity and spectral resolution of ¹³C NMR spectra allowed separate resolved detection of glutamate C4, C3, C2, glutamine C4, C3, C3, aspartate C3, C2 and glucose C6 (Fig. 1). Incorporation of ¹³C label into glutamate was noticeably faster under morphine than α -chloralose (Fig. 2), consistent with a higher metabolic activity under morphine anesthesia (7). The fit of the model to the average time courses (Fig. 2) yielded random residuals with an average scatter of 0.3 µmol/g. V_x was clearly dependent on brain activity (Fig. 3) and strongly correlated with the rate of neuronal glucose consumption (r=0.99, p=0.01, not shown).

We conclude that under physiological conditions the exchange rate between 2-oxoglutarate and glutamate across the mitochondrial membrane is tightly regulated by the malate-aspartate shuttle and thus dependent on brain activity.

Acknowledgements

We thank S. Crawford, D. Koski and K. Yue for technical support. Supported by NIH P41RR08079, NIH R01NS38672 and the Keck Foundation.

References

- 1. Mason, G.F., et al., J. Cereb Blood Flow Metab., 12, 434 (1992).
- 2. Gruetter, R. et al., Am. J. Physiol., 281, E100 (2001).
- 3. Henry, P.-G. et al., J. Neurochem. 82, 857 (2002).
- 4. Choi, I.-Y. et al., J. Cereb Blood Flow Metab., 22, 1343 (2002).
- 5. Henry, P.-G. et al., Magn. Reson. Med., 50, 684 (2003).
- 6. Henry, P.-G. et al., NMR Biomed., in press (2003).
- 7. Sibson, N.R. et al., Proc. Natl. Acad. Sci. USA, 95, 316 (1998).

Fig.1. Example of ¹³C spectrum obtained with ¹H-localized polarization transfer (27 minutes acquisition) under morphine anesthesia. Note the resolved signals of glutamate and glutamine at the C3 and C2 positions.

Fig.2. ¹³C labeling time courses of glutamate C4 (squares) and glutamate C3 (triangles) under morphine (filled symbols) and α -chloralose (empty symbols) anesthesia. Each curve represents the average from 5 different animals with SD indicated by error bars. Label incorporation into glutamate was faster with morphine than with α -chloralose, reflecting higher metabolic rates.

Fig.3. Changes in the exchange rate V_x under different anesthetic conditions. Pentobarbital is taken from Ref. 4.