## Ultra-fast In Vivo Measurement of CMRO2 in Rat Brain in Seconds: A <sup>17</sup>O NMR Study at 9.4 Tesla

## X-H. Zhu<sup>1</sup>, Y. Zhang<sup>1</sup>, N. Zhang<sup>1</sup>, K. Ugurbil<sup>1</sup>, W. Chen<sup>1</sup>

<sup>1</sup>CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States

**Introduction**: The determination of the cerebral metabolic rate of oxygen utilization (CMRO<sub>2</sub>) is essential for understanding the central role of oxidative metabolism in brain function under physiological and pathological states. The simplest MR method for measuring CMRO<sub>2</sub> is the use of <sup>17</sup>O MRS to directly detect the labeled  $H_2^{17}O$ , which is metabolized from inhaled <sup>17</sup>O<sub>2</sub> (1-3). The complete model for CMRO<sub>2</sub> calculation is based on the equation established by Kety and Schmitz as shown in Eq. [1], in which  $\alpha$  is <sup>17</sup>O enrichment of inhaled <sup>17</sup>O<sub>2</sub>, *C<sub>a</sub>*, *C<sub>b</sub>* and *C<sub>v</sub>* are the  $H_2^{17}O$  concentration expressed *in excess of the natural abundance*  $H_2^{17}O$  concentration in the arterial blood, brain tissue and venule blood, respectively, as a function of <sup>17</sup>O<sub>2</sub> inhalation time *t*.

$$\frac{dC_b(t)}{dt} = 2\alpha CMRO_2 + CBF(C_a(t) - C_v(t))$$

dt The calculation of CMRO<sub>2</sub> using Eq. [1] requires multiple measurements of  $C_b(t)$  using <sup>17</sup>O MRS or MRS imaging (MRSI),  $C_a(t)$  using <sup>17</sup>O MRS and implanted artery <sup>17</sup>O coil, and CBF using <sup>17</sup>O MRS/MRSI and H<sub>2</sub><sup>17</sup>O bolus injection (3). Such comprehensive measurements have been demonstrated to be feasible for imaging CMRO<sub>2</sub> in rat brain during 2 minutes of <sup>17</sup>O<sub>2</sub> inhalation at 9.4T due to significant sensitivity gain of <sup>17</sup>O NMR signal at high fields (3,4). In

this study, we explored the feasibility for ultra-fast measurements of CMRO<sub>2</sub> in rat with a temporal resolution of seconds at 9.4T. **Methods:** All experiments were conducted on a 9.4 Tesla Magnex magnet interfaced to a Varian INOVA console. The rats were intubated and anesthetized with  $\alpha$ -chloralose. Femoral artery and vein were catheterized for physiological monitoring and blood sampling. A multinuclear surface-coil probe consisting of an oval-shape <sup>17</sup>O coil (1 cm × 2 cm) and a butterfly-shape <sup>1</sup>H coil was used. The spatial localization of <sup>17</sup>O signal was achieved through the spatially limited B<sub>1</sub> profile of the <sup>17</sup>O surface coil, which covers the most of rat brain and a small portion of muscle. The single-pulse acquisition sequence was used to collect <sup>17</sup>O spectra with the acquisition parameters of 10 ms TR, 50 µs pulse width for a nominal 90<sup>0</sup> spin excitation, spectral



**Figure 1.**  $H_2^{17}O$  concentration of a represent rat brain before, during and after (A) 2 min  ${}^{17}O_2$  inhalation and (B)  $H_2^{17}O$  bolus injection with 1 sec resolution.

width=30 kHz and 100 averages (1 second temporal resolution). The same sequence was applied to acquire <sup>17</sup>O spectra for determining  $C_b(t)$ ,  $C_a(t)$  and CBF. The right internal carotid artery was catheterized for the injection of  $H_2^{17}O$  bolus and measurements of CBF, which can be calculated from the "wash-out" of the labeled  $H_2^{17}O$  from the brain tissue (4). Each rat performed a 2-minute inhalation of <sup>17</sup>O<sub>2</sub> (72.1% enrichment) for determining  $C_b(t)$ . An implanted <sup>17</sup>O coil was used to detect  $C_a(t)$  in the left carotid artery (5). A complete model (6) was used to calculate the CMRO<sub>2</sub> values in each second during the inhalation.

**Results and Discussion:** Figure 1A demonstrates a time course showing the change of the metabolic  $H_2^{17}O$  concentration as a function of time (i.e.,  $C_b(t)$ ) in three periods: control (~3 min), inhalation (2 min) and post inhalation (~11 min). The control concentration presents the natural abundance  $H_2^{17}O$  concentration

(20.35 mM), which can be used to calibrate the absolute  $H_2^{17}O$  concentrations for the entire time course. The metabolic H<sub>2</sub><sup>17</sup>O concentration increases significantly during the <sup>17</sup>O<sub>2</sub> inhalation and starts a slow decay after the termination of the inhalation. Figure 1B shows the washout of the labeled  $H_2^{17}O$  in the brain after a  $H_2^{17}O$  bolus injection. The decay rate was used to calculate CBF and the ratio of this decay rate versus the decay rate measured in post-inhalation period as shown in Fig. 1A gave a constant of n = 0.56, which reflects the limited permeability of  $H_2^{17}O$ across the mitochondria membranes in cells and it was used in the complete model for calculating CMRO<sub>2</sub> values (3). Figure 2A illustrated the time course of CMRO<sub>2</sub> during a 2minute inhalation from a representative rat. The temporal resolution of this curve was 1 second. At initial inhalation period, the  $H_2^{17}O$  signal increase was similar with the signal fluctuation leading to a large variation of the calculated CMRO2. Another factor leading to offset of the initial calculated CMRO<sub>2</sub> from the true CMRO<sub>2</sub> is the transition time required to reach equilibrium for binding the inhaled  ${}^{17}\text{O}_2$  to hemoglobin in blood. Nevertheless, the calculated CMRO<sub>2</sub> value rapidly reaches a constant value after approximately 15 seconds of inhalation. The constant value was similar with the true CMRO2 value (1.32 µmol/g/min) averaged in the later inhalation period. The CMRO<sub>2</sub> value of 1.32 µmol/g/min is relatively lower than that measured in cortical areas using <sup>17</sup>O MRS imaging (3). This is presumably due to the partial tissue contamination from muscle with much lower CMRO<sub>2</sub>. These results demonstrate the feasibility for determining CMRO<sub>2</sub> in vivo in a small rat brain with a fast temporal resolution of 1 second if the initial inhalation period (~15 seconds) is excluded. In addition, the fluctuations in the CMRO<sub>2</sub> time course in Fig. 2A can be significantly reduced by averaging several adjacent data points with reduced temporal resolution in a range of few seconds.

We have recently proposed a simplified model for noninvasive measurements of CMRO<sub>2</sub> using <sup>17</sup>O MRS. This model is based on the polynomial fitting of  $C_b(t)$  measured in an <sup>17</sup>O<sub>2</sub> inhalation, and the first order polynomial coefficient can be used to calculate CMRO<sub>2</sub> (6). The same model was used to test the data measured in this study. Figure 2B shows that both linear and quadratic fittings gave similar results (1.43 and 1.34 µmol/g/min, respectively)



**Figure 2.**  $H_2^{17}O$  concentration of a represent rat brain during 2 min  ${}^{17}O_2$  inhalation and CMRO<sub>2</sub> values were calculated with completed (A) and simplified model (B) with 1s time resolution.

compared to the complete model (1.32  $\mu$ mol/g/min). This result further validates the simplified model for noninvasive measurement of CMRO<sub>2</sub> in small animal brain.

**Conclusion:** In this work, we demonstrate the feasibility for ultra-fast measurements of  $CMRO_2$  in rat with a temporal resolution of seconds. Such feasibility should be essential for monitoring the rapid changes of  $CMRO_2$  by fast physiological and/or pathological perturbations. The <sup>17</sup>O sensitivity gain at high field is crucial for this study.

Acknowledgments: NIH grants NS38070, NS39043, NS41262, EB00329, EB00513, P41 RR08079, Keck Foundation, and MIND Institute.

**References:** (1) Mateescu GD, et al. *Proceedings of SMRM*, 1989. p 659. (2) Fiat D, et al. *Neurol Res* 1992; 14:303-11. (3) Zhu XH, et al. *PNAS* 2002; 99:13194-13199. (4) Zhu XH, et al. *MRM* 2001; 45:543-9. (5) Zhang, XL, et al. *MAGMA* 2003; 16:77.85. (6) Zhang NY, et al. *Proceedings of ISMRM*, 2002. p 344.