WELCOME AND MEDAL PRESENTATIONS
Jürgen Hennig, President
07:45 – 08:20

FOURTH ANNUAL LAUTERBUR LECTURE
Fourier’s Heritage
Richard R. Ernst
ETH
Zurich, Switzerland
Ballroom
08:20 –09:00

PLENARY LECTURES
Interventional MR: Thermotherapy
Ballroom
09:00 – 10:15

Chairs: Jeffrey L. Duerk
 Jorg F. Debatin

Educational Objectives
At the conclusion of this session, Participants should be able to:

- Identify the role of local tumor treatment and control in cancer therapy.
- Recognize the techniques used for MR monitoring of thermotherapy.
- List methods of thermal energy deposition used for tumor ablation.
- Discuss the current role of MR image-guided thermotherapy in clinical care.
- Recognize the potential and limitations of thermal ablation treatment in the future of local cancer therapy.

09:00 1. Concepts in Local Therapy for Liver Cancer.
 David Mulligan.
 Mayo Clinic Arizona, Scottsdale, AZ, USA.

 R. Mark Henkelman.
 University of Toronto and Sunnybrook & Women's College Health Sciences Centre, Toronto, ON, Canada.

 Hans-Joachim Schwarzmaier.
 Heinrich-Heine-University of Duesseldorf at Krefeld, Germany.
Hyperpolarized Gas Imaging in the Lung
Room A102
11:00 – 13:00

Chairs: James R. Brookeman
John P. Mugler, III

4. Young Investigator Awards Finalist: Probing Lung Physiology with Xenon Polarization Transfer Contrast (XTC).
K. Ruppert, J.R. Brookeman, K.D. Hagspiel and J.P. Mugler III.
University of Virginia School of Medicine, Charlottesville, VA, USA.

University of Virginia, Charlottesville, VA, USA.

University of Kobe, Kobe, Hyogo, Japan.

7. Breathhold 19F-MRI of Porcine Lungs Ventilated with Fluorinated Gas (SF$_6$).
Johannes Gutenberg-University, Mainz, Germany.

Université Claude Bernard and Creatis, Lyon France; Unité INSERM and Institut Laüe-Langevin, Grenoble, France.

9. Detection of Regional Microstructural Changes of the Lung in Emphysema Using Hyperpolarized 3He Diffusion MRI.
M. Salerno, J.R. Brookeman, E.E. de Lange, J. Knight-Scott and J.P. Mugler III.
University of Virginia School of Medicine, Charlottesville, VA, USA.

10. Perfusion Assessment Using Hyperpolarized 3He Microspheres.
Duke University Medical Center, Durham, NC, USA and Point Biomedical Corporation, San Carlos, CA, USA.

11. MRI of Laser-Polarized 129Xe: Pulmonary Applications.
S.D. Swanson, M.S. Rosen, R.C. Welsh and T.E. Chupp.
The University of Michigan, Ann Arbor, MI, USA.
MRI and MRS of Epilepsy and Electrical Brain Activity
Room A108
11:00 – 13:00

Chairs: Thomas Ernst
Douglas L. Arnold

11:00 12. In Which Cases of TLE is 1H-MRSI Not Predictive For Good Surgical Outcome After Selective Amygdalo-Hippocampectomy?
Central Institute of Mental Health and Mannheim Hospital, University of Heidelberg, Mannheim, Germany.

11:12 13. GABA Synthesis and Cycling in Human Brain as Studied by 1H and 13C NMR Spectroscopy.
Yale University School of Medicine, New Haven, CT, USA and Nathan S. Kline Institute, Orangeburg, NY, USA.

Yale University, New Haven, CT, USA.

11:36 15. Hippocampal Imaging and Volumetry in Temporal Lobe Epilepsy at 1.5 and 4.0 Tesla.
University of Pennsylvania, Philadelphia, PA, USA.

SGPGIMS, Lucknow, India.

12:00 17. Diffusion Tensor Imaging of Cryptogenic and Acquired Partial Epilepsies.
Institute of Neurology, London, UK.

12:12 18. Localization of Epileptiform Activity Using Spike-Triggered fMRI.
Institute of Neurology, London, UK.

UCLA School of Medicine, Los Angeles, CA, USA.

12:36 20. Restoration of EEG Recorded During Functional EPI.
Klinikum Grosshadern, University of Munich, Munich, Germany.

12:48 21. Removal of Scanner Artifact from EEG Recorded during fMRI.
P.J. Allen and O. Josephs.
The National Hospital for Neurology and Neurosurgery, and Institute of Neurology, London, UK.
CLINICAL CATEGORICAL:
Fetal and Newborn Imaging
Room A201
11:00 – 13:00

Chair: Donald G. Mitchell

Educational Objectives
Upon completion of this course, participants should be able:

- To establish technical protocols for obstetric and neonatal MRI;
- To recognize when MRI might add important information following ultrasound.

11:00 Fetal Imaging Overview.
 Eric Outwater.

11:30 MRI of Fetal and Neonatal CNS Abnormalities.
 Deborah Levine.

12:00 Impact of Fetal MRI on Management.
 Anne Maria Hubbard.

12:30 Discussion.
Musculoskeletal MR Spectroscopy

Room A207
11:00 – 13:00

Chairs: M. Joan Dawson
Klaas Nicolay

11:00 22. TCA Cycle Flux Measurements in Human Skeletal Muscle.
 Yale University School of Medicine, New Haven, CT, USA.

11:12 23. Assessment of Mitochondrial Energy Coupling In Vivo Using a Novel 13C/31P NMR Approach.
 Yale University School of Medicine, New Haven, CT, USA.

11:24 24. Characterisation of Muscle Metabolism and Function by MRI and MRS in Inflammatory Myopathy.

11:36 25. Very Low Levels of the mtDNA A3243G Mutation Associated with Mitochondrial Dysfunction in vivo.
 University of Oxford, Oxford, UK; University of Bologna, Bologna, Italy and The University of Newcastle upon Tyne, Newcastle upon Tyne, UK.

11:48 26. 31P NMR Study of Bioenergetics in the Rat Hindlimb in Response to VEGF$_{121}$ Gene Therapy.
 National Institute on Aging, Baltimore, MD, USA.

12:00 27. Contractions and Glycolysis are Closely Coupled in Skeletal Muscle: A 1H and 31P MRS Study.
 A.C. Hsu and M.J. Dawson.
 University of Illinois at Urbana-Champaign, Urbana, IL, USA.

12:12 28. In Vivo 31P MRS Evidences a Paradoxical Reduction of ATP Cost of Contraction Associated with
 Muscular Fatigue in Rat Gastrocnemius Muscle.
 Faculté de Médecine de Marseille, Marseille, France.

 C. Boesch, R. Kreis and J. Décombaz.
 University Bern, Bern, Switzerland and Nestlé Research Center, Lausanne Switzerland.

12:36 30. Regional Difference in Intramyocellular Lipids Detected by 1H Spectroscopic Imaging at 4T:
 Enhanced Spectral/Spatial Resolution.
 Albert Einstein College of Medicine, Bronx, NY, USA and Brookhaven National Laboratory, Long Island, NY, USA.

 R. Kreis and C. Boesch.
 University of Bern, Bern, Switzerland.
Myocardial Perfusion
Room C106
11:00 – 13:00

Chairs: Michael Jerosch-Herold
Markus Scheidegger

11:00 32. **First-Pass Myocardial Perfusion MRI Using Dipyridamole Infusion and Handgrip Exercise: Comparison with Cardiac Catheterization and Stress Myocardial SPECT.**
N. Kawada, H. Sakuma, H. Kubo, K. Takeda, M. Motoyasu, Y. Saito, T. Nakano, A. Nozaki and H. Kabasawa. Mie University School of Medicine, Tsu, Mei, Japan and GE Yokogawa Medical Systems, Hino, Tokyo, Japan.

11:12 33. **Transmyocardial Laser Revascularization: Treatment Follow-up with Cine Magnetic Resonance Imaging and Magnetic Resonance First-Pass Perfusion Imaging in a Chronic Ischemic Pig Model.**
O.M. Muehling, N.M. Wilke, Y. Huang, Y. Wang, M. Jerosch-Herold, S. Wann, M.M. Cayton and M.M. Mirhoseini. University of Minnesota Medical School, Minneapolis, MN, USA and Heart and Lung Institute Wisconsin and St. Luke's Hospital, Milwaukee, WI, USA.

11:24 34. **Echo-Planar MR Perfusion Imaging is Highly Reliable in Detection of Coronary Artery Disease: A Comparison with Positron Emission Tomography and X-Ray Coronary Angiography.**

11:36 35. **Myocardial Perfusion Quantification in Infarct: One Compartment Model or Up-Slope Method?**
J-P. Vallée, F. Lazeyras, A. Righetti and D. Didier. Geneva University Hospital, Geneva, Switzerland.

11:48 36. **First-Pass Myocardial Perfusion Imaging Using Interleaved Notched Saturation.**
G.S. Slavin, S.D. Wolff, S.N. Gupta and T.K.F. Foo. GE Medical Systems, Milwaukee, WI, USA and Integrated Cardiovascular Therapeutics, Woodbury, NY, USA.

12:00 37. **Predictive Registration of Cardiac MR Perfusion Images Using Geometric Invariants.**
M. Solaiyappan and S.N. Gupta. Johns Hopkins University, Baltimore, MD, USA and GE Medical Systems, Milwaukee, WI, USA.

12:12 38. **Assessment of Regional Differences in Myocardial Blood Flow Using T_2-Weighted 3D BOLD Imaging.**
K.B. Wright, F. Klocke, V.S. Deshpande, J. Zheng, K. Harris, R. Tang, S. Hedjbeli, O. Simonetti, J.P. Finn and D. Li. Northwestern University, Chicago, IL, USA.

12:24 39. **Dipyridamole-BOLD MRI: a New Method for Assessing Heart Function in Patients with Hypertensive Hypertrophy.**
G.M. Beache, D.A. Herzka, W.S. Post, J.L. Boxerman, S.N. Gupta, A.Z. Faranesh, E.P. Shapiro, J.L. Weiss and M.N. Hill. Johns Hopkins University School of Medicine, Baltimore, MD, USA and GE Medical Systems, Milwaukee, WI, USA.

12:36 40. **Steady-State Detection of Ischemia with AngioMARK.**
C.H. Lorenz, S. Flacke, J.M. Chia, M. Taniuchi, J.S. Allen, M. McLean, R.M. Setser, T. Chan and R. Weisskoff. Washington University School of Medicine, St. Louis, MO, USA and EPIX Medical, Inc., Cambridge, MA, USA.

12:48 41. **MRI Perfusion Measurements of Myocardial Angiogenesis Following Perivascular Delivery of VEGF.**
M. Jerosch-Herold, O. Muehling, A. Zenovich, A. Mansoor, H. Huang, F. Zhao, A.E. Stillman and N. Wilke. University of Minnesota Medical School, Minneapolis, MN, USA.
Interventional MR Imaging Techniques
Room C205
11:00 – 13:00

Chairs: Josef Tacke
 Kim Butts

11:00 42. Real-Time Projection MR Angiography with Intra-Arterial Injections of Gadolinium.
 Johns Hopkins University School of Medicine, Baltimore, MD, USA.

11:12 43. On the Feasibility of Local Drug Delivery Using Thermo-Sensitive Liposomes and MR-Guided
 Focused Ultrasound.
 Victor Segalen University, Bordeaux, France and Nycomed Imaging AS, Oslo, Norway.

11:24 44. Study of Cell Viability in MR Imaged Focused Ultrasound Lesion In Vivo in Rabbit Brain.
 L. Chen, D. Bouley, B.T. Harris and K. Butts.
 Stanford University, Stanford, CA, USA.

11:36 45. MR Thermometry for Predicting Thermal Damage: Interstitial Laser Coagulation in an In Vivo
 Canine Prostate.
 University of Toronto; Sunnybrook & Women's College Health Sciences Centre and The Toronto Hospital, Toronto, ON,
 Canada.

 Mayo Clinic, Rochester, MN, USA.

12:00 47. Temperature Mapping of Frozen Tissue Using Eddy Current Compensated Half Excitation RF Pulses.
 J.P. Wansapura, B.L. Daniel and K. Butts.
 Stanford University, Stanford, CA, USA.

12:12 48. The Effect of Perfusion on the Temperature Distribution During Hyperthermia: Study on the
 Perfused Pig Kidneys.
 University of Freiburg, Freiburg, Germany.

 Tokai University, Hiratsuka, Japan; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA and
 AIST, MITI, Tsukuba, Japan.

 A. Martin, H. Liu, D. Lovick, W. Hall and C. Truwit.
 University of Minnesota, Minneapolis, MN, USA and Philips Medical Systems, Best, Netherlands.

 King's College and Guy's Hospital, London, UK; University of Minnesota, Minneapolis, MN, USA and Philips Medical
 System, Best, Netherlands.
fMRI Acquisition Methods
Room C209
11:00 – 13:00

Chairs: Eric C. Wong
Douglas C. Noll

11:00 52. Three-Dimensional Tailored RF Pulses for the Reduction of Susceptibility Artifacts in Gradient Echo Functional MRI.
V.A. Stenger, F.E. Boada and D.C. Noll.
University of Pittsburgh, Pittsburgh, PA, USA and University of Michigan, Ann Arbor, MI, USA.

University of California, San Diego, CA, USA.

A.W. Song and A.M. Takahashi.
Duke University Medical Center, Durham, NC, USA.

11:36 55. Perfusion-weighted "Single-Trial" fMRI.
National Institutes of Health, Bethesda, MD, USA.

11:48 56. Prospective Acquisition Correction for Head Motion with Image-based Tracking for Real-Time fMRI.
Siemens Medical Systems, Erlangen, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.

12:00 57. Real-Time Prospective Correction of Stimulus Correlated Multiplanar Motion during fMRI.
Mayo Clinic, Rochester, MN, USA.

12:12 58. Event-Related fMRI with Pseudo-Randomized Inter-Stimulus Intervals (ISI). Optimization of the Distribution of the ISI.
O. David, J. Warnking and C. Segebart.
Université Joseph Fourier, Grenoble, France.

H. Hoogduin and N. Ramsey.
University Medical Center, Utrecht, The Netherlands.

12:36 60. High-Resolution Segmented EPI in a Motor Task fMRI Study at 1.5 Tesla.
University Hospital Vrije Universiteit, Amsterdam, The Netherlands; The Royal Marsden NHS Trust, Sutton, Surrey, UK and The MRI Institute for Biomedical Research, St. Louis, MO, USA.

12:48 61. The Effect of Inversion Time on Apparent T2 in Double Echo FAIR (DEFAIR) Images: Experimental Results and Theoretical Model.
Institute of Child Health and University College London, London, UK.
GOLD CORPORATE MEMBER LUNCHE TIME SYMPOSIUM
GE Medical Systems
Cardiac MR and 3T – Technology in Clinical Practice
Room C112
13:00 – 14:00
POSTER WALKING TOUR
Angiogenesis
Monday, 3 April, 2000
Hall C
14:00 – 16:00

Chairs: Kevin Brindle
 Anwar R. Padhani

Please see page 112 for details

POSTER WALKING TOUR
MR Spectroscopy of Degenerative and Inflammatory Brain Disease
Monday, 3 April, 2000
Hall C
14:00 – 16:00

Chairs: Norbert Schuff
 Hoby P. Hetherington

Please see page 113 for details
STRATEGIES FOR SUCCESSFUL CLINICAL RESEARCH
FDA Approval, Grantsmanship, Funding Opportunities, and the Grants Process
Room A207
14:00 – 16:00

Chairs: Linda Chang
Joseph Frascella
David A. Place

Educational Objectives
Upon completion of this course, participants should be able to:

• Describe how to get information from the FDA and explain the FDA approval process;
• List strategies for the preparation of successful grant applications;
• Describe National Institutes of Health funding opportunities and strategies (types of grant mechanisms; contacts for information regarding research programs and offices; shortcuts through the bureaucracies, etc.).

14:00 Introduction.
14:05 Grantsmanship Do’s and Don’ts.
 Judy Illes.
14:35 FDA Issues.
 David A. Place.
15:05 The National Institutes of Health Grant Process: Funding Mechanisms, Peer Review, Contacts.
 Linda Chang and Joseph Frascella.
15:35 Discussion.
16:00 Adjournment.
CLINICAL FOCUS SESSION
Interventional MRI - Clinical Applications
Room A201
14:00 – 16:00

Chairs: Thomas Kahn
Jonathan S. Lewin

14:00 62. Intra-Operative MR Imaging With a C-Arm System and Rotating, Tiltable Surgical Table: A Time-Use Study and Preliminary Clinical Results.
University Hospitals of Cleveland/Case Western Reserve University, Cleveland, OH, USA and Siemens Medical Engineering Group, Erlangen, Germany.

University of Leipzig, Leipzig, Germany.

14:24 64. Spread of Contrast Enhancement Observed in High Grade Gliomas in a Non-Operative Setting.
UCLA Medical Center, Los Angeles, CA, USA.

UCLA Medical Center, Los Angeles, CA, USA.

14:48 66. MRI-guided Biopsies of Petroclival Tumors.
University of Leipzig, Leipzig, Germany and General Electric Medical Systems.

15:00 67. Fast Stereoscopic MRI for Clinical Procedures.
M.A. Guttman, F.H. Epstein and E.R. McVeigh.
National Institutes of Health, Bethesda, MD, USA.

15:12 68. Laser-Induced Thermotherapy of Focal Liver Lesions in an Open MR System at 0.2 T: First Clinical Results.
Free University, Berlin, Germany.

15:24 69. Fusion of MRI- and PET Data as Therapy Control after MRI-Controlled Laser-Induced Thermotherapy (LITT) of Liver Metastases from Colorectal Carcinoma.
Charité, Campus Virchow-Klinikum, PET-Centre Berlin, and Humboldt University, Berlin, Germany.

15:36 70. MRI-Guided Percutaneous Cryotherapy of the Liver: First Clinical Experiences In A High Field System.
J. Tacke, R. Adam, P. Haage and R.W. Günther.
University of Technology, Aachen, Germany.

15:48 71. MR Guided Percutaneous Cryosurgery of Breast Carcinoma: Technique and Early Clinical Results.
Quebec City University Hospital, Quebec City, Quebec, Canada.
CLINICAL FOCUS SESSION
Pulmonary Imaging
Room C205
14:00 – 16:00

Chairs: Matthjis Oudkerk, Keynote Speaker
Robert J. Herfkens

14:00
Keynote.

14:15
72. Time-Resolved Pulmonary MR Angiography and Perfusion Imaging with Ultrashort TR.
 Northwestern University Medical School, Siemens Medical Systems and Bracco S.P.A., Chicago, IL, USA.

14:27
73. Contrast Enhanced MR Angiography for the Diagnosis of Pulmonary Embolism - A Comparison with
 Conventional Pulmonary Angiography.
 Academic Hospital Rotterdam, Netherlands and University of Sheffield, Sheffield, UK.

14:39
74. Quantification of Regional and Global Pulmonary Perfusion with Contrast Enhanced Double-VUSE
 MRA.
 Vanderbilt University School of Engineering and Vanderbilt University Medical Center, Nashville, TN, USA.

14:51
75. MRI of the Chest at 0.2 T Using Breath-Hold 2D-TrueFisp: A Comparative Feasibility Study with
 Chest Radiography.
 and M. Thelen.
 Med. Clinic I and II, Mainz, Germany and Siemens Medical Systems and University of Erlangen, Erlangen, Germany.

15:03
76. Detection of Pulmonary Air Leaks Using Time-Resolved MRI of Laser-Polarized Helium-3 Gas.
 D.A. Roberts, R.R. Rizi, D.A. Lipson, M. Aranda, L. Bearn, L. Rolf, J. Baumgardner, W.B. Gefter, J. Hansen-Flaschen,
 H.H. Hatabu, J.S. Leigh and M.D. Schnall.
 University of Pennsylvania Medical Center, Philadelphia, PA, USA.

15:15
 University of Kobe, Kobe, Hyogo, Japan.

15:27
78. Dynamic MRI of Malignant Pleura Mesothelioma to Monitor Treatment Induced Changes in
 Microcirculation.
 German Cancer Research Center and Chest Hospital Heidelberg -Rohrbach, Heidelberg, Germany and The Ohio State
 University, Columbus, OH, USA.

15:39
79. Dynamic EPI of Human Lung Ventilation Using Hyperpolarized 3He: Results from Normal Subjects
 and Patients with Severe Emphysema.
 D.S. Gierada, B. Saam, D.A. Yablonskiy, J.D. Cooper, S.S. Lefrak and M.S. Conradi.
 Washington University, St. Louis, MO, USA and University of Utah, Salt Lake City, UT, USA.
Diffusion Tensor MRI of the Central Nervous Systems
Room A102
16:30 – 18:30

Chairs: Dennis L. Parker
Roger J. Ordidge

The Weizmann Institute of Science, Rehovot, Israel; Tel-Aviv University, Tel-Aviv, Israel and Beit Levinstein Hospital, Raanana, Israel.

Université Bordeaux 2 and Hospital Pellegrin, Bordeaux, France.

17:02 82. Mapping Fiber Orientation Spectra in Cerebral White Matter with Fourier-Transform Diffusion MRI.
Massachusetts General Hospital, Charlestown, MA, USA and Epix Medical, Cambridge, MA, USA.

17:14 83. Three-Dimensional Reconstruction of In Vivo Human White Matter Tracts.
Johns Hopkins University Medical School, Baltimore, MD, USA.

17:26 84. Diffusion Tensor MR Imaging of Normal Brain Maturation in Infants and Children.
Washington University School of Medicine, St. Louis, MO, USA.

17:38 85. Tracing Fibre Tracts Using Fast Marching.
G.J.M. Parker.
University College London, London, UK.

University of Utah, Salt Lake City, UT, USA.

18:02 87. Quantitation of Corticospinal Tract Damage in Amyotrophic Lateral Sclerosis Patients Using Diffusion Tensor Imaging.
Weill Medical College of Cornell University, New York, NY, USA.

M. Seifert, C. Hillenbrand, A. Haase and P.M. Jakob.
Universität Würzburg, Würzburg, Germany.
Body - Functional MRI and MRS

Room A108
16:30 – 18:30

Chairs: Robert E. Lenkinski
Carolyn E. Mountford

16:30 **89.** Kinematic MR Cholangiopancreatographic Examination of Sphincteric Segment for Evaluation of Periampullary Pathology.
J-H. Kim, M-J. Kim, H.S. Yoo and J.T. Lee.
Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea.

16:42 **90.** Echo-Planar Imaging Assessment of Antral Grinding of Model Solid Food: Antral Forces, Antral Motility, Gastric Emptying and Satiation.
L. Marciani, P. Manoj, A. Smith, P. Young, J. Wright, R.J. Moore, D.J. Tyler, A. Fillery-Travis, R.C. Spiller and P.A. Gallow.
University of Nottingham, Nottingham, UK.; Institute of Food Research, Norwich, UK and Queen's Medical Centre, University Hospital, Nottingham, UK.

16:54 **91.** MR Urography in Patients with Acute Flank Pain: Comparison of Gadolinium-Enhanced 3D FLASH After Low-Dose Diuretic with 2D Turbo Spin Echo Sequences.
M. Sudah, R. Vanninen, K. Partanen, P. Vainio, A. Heino and M. Ala-Opas.
Kuopio University Hospital, Kuopio, Finland.

Yamaguchi University School of Medicine, Ube, Japan.

17:18 **93.** ACE-Inhibitor-Enhanced Ultra-Low Dose Gd-DTPA MR Renography in Conjunction with Breath-Hold Gd-MRA.
V.S. Lee, H. Rusinek, G. Johnson and N.M. Roafsky.
New York University, New York, NY, USA.

17:30 **94.** Moderate Hypothermia Ameliorates Liver Energy Failure Following Intestinal Ischemia-Reperfusion: In Vivo 31P Magnetic Resonance Spectroscopy Study.
P. Vejchapipat, S.R. Williams, E. Proctor, L. Spitz and A. Pierro.
University College London Medical School, London, UK and University of Manchester, Manchester, UK.

17:42 **95.** Respiratory Triggered 1H Renal Spectroscopy in Vivo with Short Echo Time PRESS.
G.J. Metzger, L.S. Szczepaniak, P. Nurenberg and L. Mollevanger.
Philips Medical Systems, Dallas, TX, USA; University of Texas Southwestern Medical Center, Dallas, TX, USA and Philips Medical Systems, Best, Netherlands.

17:54 **96.** Proton MR Spectroscopic Imaging (MRSI) and Dynamic Gd-Enhanced MRI of the Human Prostate.
University Hospital Nijmegen, Nijmegen, the Netherlands.

18:06 **97.** 1H HR-MAS Spectroscopic Analysis of Post-Surgical Prostate Tissue Targeted Using 3D MRI/MRSI.
University of California, San Francisco, CA, USA; Bruker Instruments, Fremont, CA, USA and GE Medical Systems, Fremont, CA, USA.

18:18 **98.** Preliminary Results of a Multi-Institutional Trial to Demonstrate Clinical Predictive Value of In Vivo Localized 31P MR Spectroscopy Data in Human Non-Hodgkin's Lymphoma.
Cooperative Group on MRS Application to Cancer.
MR PHYSICS AND TECHNIQUES FOR CLINICIANS:
Room A201
16:30 – 18:30

Chairs: Frank R. Korosec
Joseph C. McGowan

Educational Objectives
Upon completion of this course, participants should be able to:

- Define and describe the fundamental principles of MR imaging, including spin magnetization, the Larmor relationship, relaxation phenomena, and the process of using the spin magnetization to produce an image;
- Explain imaging pulse sequences based upon spin and gradient echoes, including fast spin echo and echo planar techniques;
- Design MR imaging protocols for diagnostic applications considering image contrast, spatial resolution, acquisition time, signal-to-noise ratio, and artifacts;
- Describe the principles and capabilities of various advanced MR techniques including perfusion and diffusion, spectroscopy, interventional MRI, and cardiac MR imaging.

Materials to accompany today's lectures can be found at http://jcmsgi.rad.upenn.edu/jmcgowan/ismr/ismrm.html.

16:30 Spin Gymnastics I.
Walter Kucharczyk and Donald B. Plewes.

17:10 Spin Gymnastics II.
Walter Kucharczyk and Donald B. Plewes.

17:50 Hardware.
Kristen Zakian.
Angiogenesis
Room A207
16:30 – 18:30

Chairs: Martin O. Leach
Nicholas Van Bruggen

J. Griebel, M. Brandl, S.A. Pahernik, A. Goetz, G. Brix and M. Dellian.
Federal Office for Radiation Protection and GSF Research Center, Neuherberg, Germany and University of Munich, Munich, Germany.

16:42 100. In vivo NMR Imaging of Microvascularization in Normal Rat Brain and in Rat Brain Tumors.
C. Rémy, I. Trôprès, M. Péoc'h, R. Farion and M. Décorps.
Université Joseph Fourier, Grenoble, France.

Z.M. Bhujwalla, D. Artemov and M. Solaiyappan.
The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

University of California, Irvine, CA, USA.

17:18 103. Vascular Permeability is Correlated with Susceptibility to Combretastatin A4 Phosphate in Four Tumor Models.
D.A. Beauregard, S.A. Hill, D.J. Chaplin and K.M. Brindle.
University of Cambridge, Cambridge, UK and Gray Laboratory Cancer Research Trust, Middlesex, UK.

17:30 104. MR Imaging for Monitoring Altered Microvascular Permeability and Ascites Volume in Ovarian Cancer Following Treatment with Antibody to Vascular Endothelial Growth Factor.
University of California San Francisco, CA, USA; University of Cologne, Cologne, Germany and Genentech Inc., South San Francisco, CA, USA.

17:42 105. MRI Quantitation of Sustained VEGF Induced Blood-Retinal Barrier Breakdown: A Rabbit Study.
University of Texas Southwestern Medical Center, Dallas, TX, USA; University of Texas, Arlington, TX, USA and Niigata University, Niigata, Japan.

17:54 106. Evaluation of Ischemia-Driven Angiogenesis in a Rat Model of Peripheral Arterial Insufficiency: A BOLD MRI Study.
J.M. Greve, S.P. Williams, H. Steinmetz, S. Bunting, L. Bernstein and N. van Bruggen.
Genentech Inc., South San Francisco, CA, USA.

University of Manchester, Manchester, UK and AstraZeneca, Macclesfield, Cheshire, UK.

Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK and Sugen Inc., San Francisco, CA, USA.
Data Correction Methods
Room C106
16:30 – 18:30

Chairs: Gareth J. Barker
Joseph V. Hajnal

16:30 109. Image-Based Evaluation of a priori B_1 Field Correction and its Effect on MRI Tissue Segmentation.
M. Alecci, Y. Zhang, J.M. Brady, P. Jezzard and S. Smith.
Oxford University, and Robotic Research Group, Oxford, UK.

Hull Royal Infirmary, Hull, UK.

16:54 111. Optical Implementation of Spiral EPI Field Homogeneity Correction and The Decoupled Automated Rotation and Translation Algorithm (DFT-DART).
M.S. NessAiver.
University of Maryland School of Medicine, Baltimore, MD, USA.

17:06 112. Intensity Correction in Intravascular MRI Using Projection Images.
M. Solaiyappan, J. Lee and E. Atalar.
Johns Hopkins University School of Medicine, Baltimore, MD, USA.

C. Han and C. Yuan.
University of Washington, Seattle, WA, USA.

17:30 114. Effects and Corrections of Maxwell Terms on Spectral-Spatial Excitation Pulses.
C-M. Tsai, J.M. Pauly, S.M. Conolly and D.G. Nishimura.
Stanford University, Stanford, CA, USA.

Z. Ding, A.W. Anderson, T.L. Vollmer and J.C. Gore.
Yale University Medical School of Medicine, New Haven, CT, USA.

K.S. Nayak, C-M. Tsai and D.G. Nishimura.
Stanford University, Stanford, CA, USA.

J.G. Pipe and E. Ahunbay.
St. Joseph's Hospital, Phoenix, AZ, USA and Wayne State University, Detroit, MI, USA.

18:18 118. Restoration of EEG Signals Distorted During Simultaneous MR Acquisitions.
J. Sijbers, I. Michiels, M. Verhoeye, J. Van Audekerke, A. Van der Linden and D. Van Dyck.
University of Antwerp, Antwerp, Belgium.
Musculoskeletal MR Imaging
Room C205
16:30 – 18:30

Chairs: Mark Schweitzer
Mikkel Østergaard

16:30 119. Quantitative Magnetic Resonance Imaging as Marker of Synovial Membrane Regeneration and Recurrence of Synovitis in Arthritic Knee Joints Treated with Arthroscopic Synovectomy - A 1-Year Follow-Up Study.
University of Copenhagen, Copenhagen, Denmark.

16:42 120. Pharmacokinetic Analysis of Gd-DTPA Enhanced MRI in the Assessment of Methotrexate vs Leflunomide in RA of the Knee.
University of Leeds and Leeds General Infirmary, Leeds, UK.

16:54 121. High Speed Tension Mapping in Muscle with MR Elastography.
Mayo Clinic, Rochester, MN, USA.

17:06 122. Time Resolved Observation of BOLD Effect in Muscle During Isometric Exercise.
J. Hennig, K. Scheffler and A. Schreiber.
University Hospital, Freiburg, Germany.

17:18 123. Quantitative MRI of Water, Fat and Transverse Relaxation Times Facilitates the Study of Degenerative Muscle Tissue.
D. Manners, G. Cea, P. Styles and D.J. Taylor.

17:30 124. Multicomponent T_2 of Resting and Exercised Muscle Following Creatine Supplementation.

University of Texas Southwestern Medical Center, Dallas, TX, USA.

17:54 126. Determination of Skeletal Muscle Perfusion Using Arterial Spin Labelling: Validation by Comparison with Venous Occlusion Plethysmography.
Pitié-Salpêtrière, Paris, France.

D.C. Newitt and S. Majumdar.
University of California, San Francisco, CA, USA.

University of Pennsylvania, Philadelphia, PA, USA.
Monday PM

Cardiac MR Spectroscopy and Sodium MR Imaging
Room C209
16:30 – 18:30

Chairs: Markus von Kienlin
Craig R. Malloy

16:30 129. Quantitation of Sodium TQF NMR in a Neonatal Rabbit Heart.
V.D. Schepkin, I.O. Choy and D.Y. Obayashi.
University of Illinois, Urbana, IL, USA; University of California, San Francisco, San Francisco, CA, USA and Finch University Health Science, Chicago, IL, USA.

16:42 130. Noninvasive Quantification of Total Sodium Concentrations in Myocardial Infarction Using
23Na MRI.
Johns Hopkins University, Baltimore, MD, USA and University of Pittsburgh, Pittsburgh, PA, USA.

16:54 131. Assessment of Activation Status of Mitochondrial K\textsubscript{ATP} Channels in Intact Rat Hearts Using
87Rb-NMR Spectroscopy.
O. Jilkina, B. Kuzio, Z. Luo and V.V. Kupriyanov.
University of Manitoba, and National Research Council, Winnipeg, Manitoba, Canada.

17:06 132. Hypotonic Shock Activates Potassium Efflux Through K\textsubscript{Ca}/H\textsubscript{H} Exchanger in Isolated Rat Hearts: a
87Rb and 31P NMR Study.
V.V. Kupriyanov, O. Jilkina and Z. Luo.
National Research Council and University of Manitoba, Winnipeg, Manitoba, Canada.

17:18 133. Antioxidant Treatment Improves \textit{in vivo} Cardiac and Skeletal Muscle Bioenergetics in Patients with
Friedreich's Ataxia.
University of Oxford, Oxford, UK; University of Bologna, Bologna, Italy and Royal Free and University College School of Medicine, London, UK.

17:30 134. 31P T\textsubscript{1} Measurements of the Human Heart at 4.1 Tesla by Fast Low-Angle MRSI.
University of Alabama, Birmingham, AL, USA.

17:42 135. Coronary Venous Perfusion has Lower Perfusion Efficacy Relative to Arterial Perfusion Localized
31P MR Spectroscopy and Colored Microsphere Studies on Isolated Pig and Rat Hearts.
National Research Council and University of Manitoba, Winnipeg, Manitoba, Canada.

17:54 136. Effect of GLUT4 Ablation on \textit{In Vivo} Cardiac Energetics and Function in Senescent Mice.
The Johns Hopkins University School of Medicine, Baltimore MD, USA and The Albert Einstein University, New York, NY, USA.

18:06 137. Proton NMR Detection of Glutamate to Measure TCA Flux, V\textsubscript{ox} and Oxygen Consumption in the
Isolated Perfused Mouse Heart.
University of Texas, Southwestern Medical Center, Dallas TX, USA and University of Texas at Dallas, Richardson, TX, USA.

18:18 138. 1H Echo-Planar Spectroscopic Imaging of the Human Heart \textit{In Vivo}.
Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany and Universität Würzburg, Würzburg, Germany.
BRONZE CORPORATE MEMBER SYMPOSIA
Bracco
Advances in Contrast Enhanced Cardiovascular MRI
Room A201
18:30 – 20:00

Provided by:
Northwest Imaging Forums
P.O. Box 25909
Eugene, Oregon 97402

Supported by an unrestricted educational grant from Bracco.

BRONZE CORPORATE MEMBER SYMPOSIA
Schering AG
Advanced Use of Contrast Agents in MRI
Room A207
18:30 – 20:00

BRONZE CORPORATE MEMBER SYMPOSIA
Toshiba Corporation
An International Perspective on Patient-Focused MRI
Room C209
18:30 – 20:00

Speakers: Mark Winkler
 Walter Wohlgemuth

BRONZE CORPORATE MEMBER SYMPOSIA
Macrconi Medical Systems (Formerly Picker International)
Room C112
18:30 – 20:00

BRONZE CORPORATE MEMBER SYMPOSIA
Bruker Medical, Inc.
Development and Application of fMRI in the Non-Human Primate
Room C107
18:30 – 20:00

Speaker: Nikos Logothetis
STUDY GROUP
White Matter Diseases
Room A102
19:30 – 21:30

Business and Scientific Meeting

19:30 Presentation of the Aims of the Study Group and Introduction of Governing Committee Members
 Massimo J. Filippi
 Scientific Institute Ospedale San Raffaele, Milan, Italy

19:45 MRI in MS: Present and Future Directions
 Joseph C. McGowan
 University of Pennsylvania, Philadelphia, PA, USA

20:15 MRI and White Matter Diseases: The Clinical Perspective
 Jack Antel
 McGill University, Montreal, Quebec, Canada

20:45 Organization of a Study Group Workshop
 Vincent Dousset
 CHU Pellegrin, Bordeaux, France

21:15 New Business
STUDY GROUP
Cardiac MR and MR Flow & Motion Quantitation
Room A108
19:30 – 21:30

Session I: Cardiac MR
Real Time Cardiac MR Imaging: A Closer Look
Chairs: Roderic Pettigrew
Albert de Roos

19:30 SENSE and SMASH: How They Work, How They Compare
Peter Bösiger
University of Zürich & Swiss Federal Institute of Technology, Zürich, Switzerland

19:50 True FISP: The Inside Story
Jeffrey M. Bundy and Orlando P. Simonetti
Siemens Medical Systems, Chicago, IL, USA

20:10 Discussion

Session II: MR Flow & Motion Quantitation
Chair: John N. Oshinski

20:15 Postprocessing of MR Flow Data
Rob J. van der Geest
Leiden University Medical Center, Leiden, The Netherlands

20:35 Discussion

Session III: Business Meeting

20:40 • Update on Multicenter Trials
• Potential Study Group Collaboration on Workshop Development
• New Business
Monday PM

STUDY GROUP
Dynamic NMR Spectroscopy
Room C106
19:30 – 21:30

Business Meeting

Scientific Meeting

Regulation of Respiration and ATP Synthesis in Heart and Muscle

ATP Synthesis in the Heart: Perspective on an Unsolved Problem
Kathryn F. LaNoue
Hershey Medical Center, Hershey, PA, USA

Domestication of Mitochondria for ATP Production in the Heart:
Evaluation of the Rapid Kinetic Effects of ATP, Calcium, and Creatine
Robert S. Balaban
National Institutes of Health, Bethesda, MD, USA

Blood Flow and Oxygen Regulation of Oxidative Phosphorylation In Vivo: A Bold Approach to a Curious Problem
Kamil Ugurbil
University of Minnesota, Minneapolis, MN, USA

Regulation of Oxidative Phosphorylation in Skeletal Muscle is Simple: Is that True and Why?
Martin Kushmerick
University of Washington, Seattle, WA, USA

Muscle pH: Does it Muck Things Up?
Ronald A. Meyer
Michigan State University, East Lansing, MI, USA

Panel Discussion
STUDY GROUP:
MR Imaging Efficacy & Effectiveness
Room C205
19:30 – 21:30

Scientific Meeting

How to Evaluate the Cost-Effectiveness of MRI in the Management of Acute Stroke
Chair: TBA

Keynote Address: Health and Economics Outcome of Alternative Practice Patterns in the Management of Acute Stroke
David Matchar
Duke Center for Clinical Health Policy Research, Durham, NC, USA

Potential Roles of MRI in the Management of Acute Stroke
Scott W. Atlas
Stanford University Medical Center, Stanford, CA, USA

A Methodological Framework for Evaluating the Cost-Effectiveness of MRI in the Management of Acute Stroke
Sylvia K. Plevritis
Stanford University, Stanford, CA, USA

Panel Discussion

Business Meeting

- Introduction of new Governing Committee
- Nominations for 2001 Governing Committee
- Development of ISMRM Workshop on Imaging Efficacy and Effectiveness
- New Business
MORNING CATEGORICAL COURSE
Cardiac MR Imaging
Room C205
07:00 – 08:00

Chairs: Andre Duerinckx
Roderic I. Pettigrew
Cynthia B. Paschal

Educational Objectives
Upon completion of this course, participants should be able to:

- Describe basic areas of routine and promising clinical use of MR in assessing cardiovascular disease;
- Describe basic areas of MR use which are both routine and promising in assessing cardiovascular disease;
- Explain the MR methodology and techniques used to assess acquired and congenital heart disease;
- Apply MR protocols for the evaluation of cardiac morphology, function, viability and blood flow;
- Describe approaches for cardiac data analysis and presentation.

The final five minutes of each talk will be reserved for questions.

07:00 Basic Cardiac MR Techniques.
 Cynthia B. Paschal.

07:30 Congenital Cardiac MR.
 Lawrence M. Boxt.

MORNING CATEGORICAL COURSE
fMRI in Neuro-Psychiatric Disease and Treatment:
Special Issues in fMRI of the Diseased Brain
Room A201
07:00 – 08:00

Chairs: John A. Detre
Peter Jezzard

Educational Objectives
Upon completion of this course, participants should be able to:

- Identify the special issues facing clinicians and researchers who wish to apply functional MRI to patient populations;
- Describe fMRI studies that have been successfully accomplished in neurological and psychiatric disorders;
- List a number of issues that remain to be resolved before widespread use of fMRI in patient populations is feasible;
- Describe the role and potential of animal models in increasing the understanding of fMRI studies in disease;
- Explain the principles and theory of pharmacological (ph) MRI;
- Appraise the potential for phMRI in humans and predict the impact on disease treatment.

07:00 Primer: Rapid Overview of fMRI in the Normal Brain.
 Peter Jezzard.

07:15 fMRI in the Presence of Pathology and Disrupted Hemodynamics.
 John A. Detre.

07:30 Practical and Analysis Implications of Clinical fMRI.
 Keith R. Thulborn.

07:45 Discussion.
MORNING CATEGORICAL COURSE
Abdominal Imaging
Room A207
07:00 – 08:00

Chair: Donald G. Mitchell

Educational Objectives
Upon completion of this course, participants should be able to:

- Implement modern MR applications for diagnosing focal and diffuse liver disease;
- Incorporate into their practices recent developments for MR imaging of the pancreas and biliary tract, including MR cholangiopancreatography;
- Use MRI to diagnose extrahepatic disease, such as that of the bowel and peritoneum, as well as vascular disease using state of the art MR angiographic techniques.

07:00 Liver.
 Donald G. Mitchell.

07:50 Questions.

MORNING CATEGORICAL COURSE
The Nano-Meter Film: How MRS and MRI Can Probe Tissue Microstructure
Room C106
07:00 – 08:00

Chairs: Chris Boesch
R. Mark Henkelman

Educational Objectives
Upon completion of this course, participants should be able to:

- Describe methods in MRS and MRI that allow studies of tissue ultra-structure;
- Identify areas in which MR can contribute to the knowledge of tissue organization;
- Evaluate potential applications and limitations of MR methods to study compartmentation, order, and transport processes in vivo;
- Generate an overview of advanced methods in MRS and MRI that give information on the nanometer scale;
- Explain the influence of tissue structure upon MR parameters.

The final five minutes of each talk will be set aside for questions.

07:00 Relaxation Times and Nano-Structures.
 Peter S. Allen.

07:30 Multiquantum Filters and Order in Tissue.
 Gil Navon.

08:00 Adjournment.
PLENARY LECTURES
Coronary Artery Disease in the 21st Century
Ballroom
08:15 – 09:30

Chairs: Cynthia B. Paschal
 Roderic I. Pettigrew

Educational Objectives
Upon completion of this session, participants should be able to:

- Describe the current and emerging diagnostic challenges in managing coronary artery disease.
- Recognize strengths and limitations of MR as a clinical tool in the assessment of coronary artery disease.
- Define new advances in MR technology that apply to the study of coronary artery disease.
- Recommend and explain the MR studies most appropriate to cardiologists as partners in patient care.

08:15 139. MR Imaging and Atherosclerotic Disease.
 Valentin Fuster.
 Mt. Sinai Medical Center, New York, NY, USA.

08:40 140. Emerging Technical Advances in MR.
 Albert Macovski.
 Stanford University, Stanford, CA, USA.

09:05 141. The Current and Evolving Clinical Role of Cardiovascular MR in Coronary Artery Disease.
 Dudley J. Pennell.
 Royal Brompton Hospital, London, UK.
RF Coils and Imaging
Room A102
10:30 – 12:30

Chairs: Lizann Bolinger
 Gary Shen

10:30 **142.** Endourethral MRI.
(H. H. Quick, H. K. Pannu, R. Genadry and E. Atalar.
Johns Hopkins University, Baltimore, MD, USA.)

10:42 **143.** Transmission Field Profiles for Transceive Phased Array Coils.
University of Florida Brain Institute, Gainesville, FL, USA.)

10:54 **144.** In vivo Evaluation of the Multi-Ring Surface Coil for Brain Micro-Imaging Using a Whole Body 3T System: Standard Imaging Sequences.
(F. Mirrashed, I. Cheung and J. C. Sharp.
National Research Council Canada, Winnipeg, Manitoba, Canada and University of Alberta, Edmonton, Alberta, Canada.)

11:06 **145.** A Detuneable TEM Transmit Coil for 4T fMRI and Spectroscopy.
University of Minnesota, Minneapolis, MN, USA.)

11:18 **146.** A Detuneable Elliptic Transmission Line Resonator for Body Imaging at 3T.
(P. J. Ledden, L. L. Wald, J. T. Vaughan and D. Hinton.
Nova Medical, Inc. Wakefield MA, USA; Massachusetts General Hospital, Charlestown, MA, USA and University of Minnesota, Minneapolis, MN, USA.)

11:30 **147.** 7T vs. 4T: Preliminary B1, SNR, SAR Comparison in the Human Head.
University of Minnesota, Minneapolis, MN, USA and Pennsylvania State University College of Medicine, Hershey, PA, USA.)

11:42 **148.** B1 Field Homogeneity Comparison at 300 MHz: Calculation vs. Experiment.
The Pennsylvania State University College of Medicine, Hershey, PA, USA and University of Minnesota, Minneapolis, MN, USA.)

11:54 **149.** FDTD Numerical Comparison of Multi-Strut TEM Resonators.
(T. S. Ibrahim, R. Lee, B. A. Baertlein and P. M. L. Robitaille.
The Ohio State University, Columbus, OH, USA.)

12:06 **150.** WITHDRAWN

12:18 **151.** Role of B1-Eigenfields of Dielectric Objects in High-Field MRI.
(P. Röschmann.
Philips Research Laboratories, Hamburg, Germany.)
Tuesday AM

Rapid Imaging I
Room A108
10:30 – 12:30

Chairs: Norbert J. Pelc
Peter Boesiger

10:30 152. 2D SENSE for Faster 3D Imaging.
University and ETH Zurich, Zurich, Switzerland.

10:42 153. SENSE with Partial Fourier Homodyne Reconstruction.
K.F. King and L. Angelos.
GE Medical Systems, Milwaukee, WI, USA.

Toshiba Medical Systems R&D Center and Toshiba Nasu Operations, Tochigi, Japan.

Aachen University of Technology, Aachen, Germany.

11:18 156. SMASH vs SENSE.
B. Madore and N.J. Pelc.
Stanford University School of Medicine, Stanford, CA, USA.

11:30 157. Increasing Temporal Resolution in Dynamic Gd Enhanced Breast Imaging Using SENSE.
D.J. Larkman, N.M. deSouza and J.V. Hajnal.
Imperial College School of Medicine, Hammersmith Hospital, London, UK.

11:42 158. Simultaneous Acquisition of Multiple FOV Images for Real Time Catheter Tracking.
Johns Hopkins University School of Medicine, Baltimore, MD, USA and GE Medical Systems, Waukesha, WI, USA.

11:54 159. Slab Scan Diffusion Imaging.
S.E. Maier and F.A. Jolesz.
Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

12:06 160. ZOnally-Magnified Oblique Multislice (ZOOM) EPI.
University College London, London, UK.

W.F. Block, A.V. Barger and C.A. Mistretta.
University of Wisconsin, Madison, WI, USA.
CLINICAL CATEGORICAL:
Musculoskeletal MRI, Session I
Ballroom
10:30 – 12:30

Chairs: Christopher F. Beaulieu
Lynne S. Steinbach

Educational Objectives
Upon completion of this course, participants should be able to:

• Select appropriate MR pulse sequences for evaluation of articular cartilage abnormalities;
• Recognize MR imaging findings in articular cartilage injury and apply them to the interpretation of clinical studies;
• Describe areas of active clinical research in articular cartilage imaging and quantitative evaluation;
• Define the role of contrast media in analyzing internal derangements of joints, including both indirect and direct MR arthrography;
• Assess the value of high resolution, non-contrast MR imaging of joints;
• Identify clinical situations in which intravenous contrast medium may be useful in evaluation of the synovium.

10:30
Pulse Sequence Design and Contrast Principles for Cartilage Imaging.
Garry E. Gold.

10:55
Interpretation of Articular Cartilage Abnormalities in Clinical MR.
David G. Disler.

11:20
Deborah Burstein.

11:45
Sonja C. Faber.

12:10
Discussion.
CLINICAL CATEGORICAL: Brain Spectroscopy
Room A201
10:30 – 12:30

Chair: Sarah J. Nelson

Educational Objectives
Upon completion of this course, participants should be able to:

- Identify situations where MRS may be valuable in the assessment of neurological disease;
- Select the most appropriate MRS techniques for such applications;
- Identify metabolites in spectra from normal and diseased brain tissue;
- Recognize common spectral artifacts and distinguish them from regions of pathology.

The final 5 minutes of each talk will be reserved for questions.

10:30 Single Voxel MRS of the Brain.
 Brian Ross.

11:00 Diagnosis of Brain Tumors.
 Scott D. Rand.

11:30 Evaluation of HIV-Related Disease.
 Linda Chang.

12:00 MR Spectroscopic Imaging in Clinical Practice.
 Peter B. Barker.
Perfusion: Arterial Spin Labeling
Room A207
10:30 – 12:30

Chairs: Jeff H. Duyn
Alan C. McLaughlin

D.C. Alsop, J.A. Maldjian and J.A. Detre.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

R. Gruetter and S-G. Kim.
University of Minnesota, Minneapolis, MN, USA.

C.A. Branch, L. Hernandez and D. Lewis.
The Nathan S. Kline Institute, Orangeburg, NY, USA and Albert Einstein College of Medicine, Bronx, NY, USA.

11:06 165. In-Vivo T1 Measurements in the Rat Brain Accounting for Inflow Effects.
E.L. Barbier, E. Grillon and M. Décorps.
CHU Michallon, Grenoble, France.

11:18 166. Two-Compartment Exchange Model for Pefusion Quantification Using Arterial Spin Tagging.
J. Zhou, D.A. Wilson and P.C.M. van Zijl.
Johns Hopkins University Medical School, Baltimore, MD, USA.

11:30 167. An Improvement to Perfusion Quantification - Accounting for Blood Water Exchange Time.
L.M. Parkes, E.A. Moore and P.S. Tofts.
University College London, London, UK.

M. Günther and L.R. Schad.
Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.

11:54 169. Perfusion Based Event-Related Functional MRI.
University of Texas Health Science Center, San Antonio, TX, USA.

12:06 170. Dynamic Spin-Tagging Pulmonary Perfusion MRI During Pharmacologic Intervention and Acute Pulmonary Embolism in a Pig Model.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

V.M. Mai, Q. Chen and R.R. Edelman.
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
MR Spectroscopy of Brain: Animal Models
Room C106
10:30 – 12:30

Chairs: Jerry D. Glickson
Claudia Franke

10:30 172. A Study of Brain Glycogen Recovery After Insulin-Induced Hypoglycemia in Rat Brain in vivo.
University of Minnesota, Minneapolis, MN, USA.

10:42 173. Distinction Between Cerebral Cryptococcomas, Staphylococcus aureus Infections and Tumours in an Animal Model.
University of Sydney, Sydney, Australia.

10:54 174. Brains of Creatine Kinase Deficient Mice Lack Phosphocreatine and Exhibit an Increased NAA Level.
University Hospital Nijmegen and Nijmegen University, Nijmegen, the Netherlands.

11:06 175. The Rate of Forward Creatine Kinase Reaction Correlates with Adenosine Triphosphate Depletion During Delayed Cerebral Energy Failure.
University College London Hospitals and University College London and University College London School of Medicine, London, UK.

11:18 176. Stroke Outcome Following MCA Occlusion Can Be Predicted by, in vivo, 1-(2-trifluoromethylphenyl)imidazole (TRIM) Concentrations, as Measured by 19F MRS.
K.K. Haga, B. Sweatman, I. Ismail and S.C.R. Williams.
Kings College, London, UK and Glaxo Wellcome, Ware, UK.

11:30 177. 2-Iminobiotin Improves Cerebral Energy Status and Electrical Brain Activity Following Hypoxia-Ischemia in Newborn Piglets.
Wilhelmina Children's Hospital and Utrecht University, Utrecht, the Netherlands.

University of Kuopio, Kuopio, Finland.

B.G. Jenkins, O.A. Andreassen, E. Kuestermann, R.J. Ferrante and M.F. Beal.
Massachusetts General Hospital, Charlestown, MA, USA.

University Hospital Nijmegen and Nijmegen University, Nijmegen, the Netherlands.

T.Q. Duong, J.D. Lipscomb, S.U. Oh, C. Iadecola and S-G. Kim.
University of Minnesota, Minneapolis, MN, USA.
Contrast-Enhanced 3D MR Angiography
Room C205
10:30 – 12:30

Chairs: Jörg F. Debatin
Yi Wang

10:30 182. Intraindividual Comparison of Two Contrast Agents - Gd-DTPA and Gd-BOPTA - for Multiphasic MR Angiography.
M.V. Knopp, H. von Tengg-Kobligk, F. Floemer, F. Giesel, M. Bock and S.O. Schoeberg.
German Cancer Research Center, Heidelberg, Germany and Ohio State University, Columbus, OH, USA.

University Hospital, Essen, Germany and Siemens Medical Systems, Erlangen, Germany.

H. Gaucher, F. Lefèvre, B. Lehalle, C. Argaud and D. Régent.
CHU Brabois, Nancy, France and GE Medical Systems, Buc, France.

11:06 185. Delay and Duration of Contrast Medium in the Artery after Injection: To Synchronize Data Acquisition and Arterial Enhancement in Contrast MRA.
National Cardiovascular Center, Osaka, Japan.

11:18 186. 3D MR Angiography of the Pulmonary Arteries In Under 4 Seconds.
University Hospital, Essen, Germany and Siemens Medical Systems, Erlangen, Germany.

R.M. Hoogeveen, R. Conrad and J. Gieseke.
Philips Medical Systems, Best, The Netherlands and Uni-Klinik, Bonn, Germany.

11:42 188. High-Resolution Contrast-Enhanced MRA Using SENSE.
University and ETH Zurich, Zurich, Switzerland; Philips Medical Systems, Hammersmith, London, UK, and Glasgow Royal Infirmary, Glasgow, UK.

11:54 189. High Resolution CE-MRA Using Dual-Resolution Acquisition and Segmentation Based on Spatial Frequency-Dependent 2D Temporal Correlation.
University of Wisconsin-Madison, Madison, WI, USA.

12:06 190. Motion of the Proximal Renal Artery.
University Hospital Maastricht, Maastricht, The Netherlands.

12:18 191. Is Contrast Enhanced MRA Cost Effective?
A.J.B. Watt, A. Reid and G. Roditi.
Glasgow Royal Infirmary, Glasgow, UK.
Real-Time/Ultra-Fast Cardiac Imaging
Room C209
10:30 – 12:30

Chairs: Daniel K. Sodickson
Bob S. Hu

10:42 193. Real Time Interactive Spiral Imaging in a Reduced FOV for Cardiac Applications.
Philips Research Laboratories, Hamburg, Germany.

10:54 194. Non-ECG Triggered Multi-Slice Real-Time Cardiac Dobutamine Stress Imaging.
Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA and Philips Medical Systems, Best, Netherlands.

11:06 195. Turnkey Imaging of Myocardial Strain Using Single Shot 3D EPI.
T.G. Reese, D. Feinberg, J-G. Dou and V.J. Wedeen.
Massachusetts General Hospital, Boston, MA, USA and Washington University, St. Louis MO, USA.

Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands and Leiden University Medical Center, Leiden, The Netherlands.

11:30 197. The Effect of Ergometer Exercise on Flow in the Fontan Circulation Studied with Fast, Breathhold MR-Phase Contrast Techniques.
Aarhus University Hospital, Aarhus, Denmark.

M. Stuber, P.G. Danias and W.J. Manning.
Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA and Philips Medical Systems, Best, Netherlands.

11:54 199. Segmented TrueFisp - An Improved Technique for Cine MR Angiography.
J. Carr, O. Simonetti, R. Kroeker, J. Bundy, S. Pereles and J.P. Finn.
Northwestern University Medical School and Siemens Medical Systems, Chicago, IL, USA.

Leiden University Medical Center, Leiden, the Netherlands.

12:18 201. Arrhythmia Rejection Using a VCG-Based Triggering Algorithm.
Washington University Medical Center, St. Louis, MO, USA and Philips Medical Systems, Best, The Netherlands.
GOLD CORPORATE MEMBER LUNCHE TIME SYMPOSIUM
Nycomed Amersham
Room C112
12:30 – 13:30
POSTER WALKING TOUR
RF Coils
Tuesday, 4 April, 2000
Hall C
13:30 – 15:30

Chairs: Richard W. Briggs
Joseph Murphy-Boesch

Please see page 114 for details.

POSTER WALKING TOUR
Flow Quantification: Methods and Applications
Tuesday, 4 April, 2000
Hall C
13:30 – 15:30

Chairs: Thomas K.F.Foo
David N. Firmin

Please see page 116 for details
CLINICAL FOCUS SESSION
Liver Contrast Agents
Room A201
13:30 – 15:30

Chairs: Philip J. Robinson, Keynote Speaker
 Janice Ward

13:30 Keynote.

 European Multicenter Group, Mainz, Germany.

 M.T. Lavelle, V.S. Lee, G.A. Krinsky, J.C. Weinreb and N.M. Rofsky.
 New York University, New York, NY, USA.

14:09 204. Simultaneous Acquisition of In-Phase and Opposed Phase Dynamic MR Imaging for Assessment of Focal Lesions in Cirrhotic Liver.
 Yonsei University College of Medicine, Seoul, South Korea and Siemens AG, Erlangen, Germany.

14:21 205. MRI in Focal Hepatic Disease: A Comparison of Gd-DTPA and Ferumoxides-enhanced MRI in over 900 patients.
 Ludwig-Maximilians-University, Munich, Germany.

 Ludwig-Maximilians-University, Munich, Germany.

14:45 207. The Impact of Reduced Dose SPIO on the Detection of Colorectal Liver Metastases: A Quantitative and Qualitative Analysis.
 St James's University Hospital, Leeds, UK.

14:57 208. Superparamagnetic Iron Oxide-Enhanced MR Imaging for the Detection and Characterization of Hepatic Tumors: Do We Really Need a Precontrast Study?
 Chonbuk National University Hospital, Chonbuk, Korea.

 M. Oudkerk, P. van Dijk, M. König, J. Grimm, B.O. de Beeck, J. Fernandez-Cuadrado, M. Roddie, B. Song and C.G. Torres.
 University Hospital Rotterdam, Rotterdam, The Netherlands; Nycomed Amersham, Oslo, Norway; Ruhr-University Clinic, Bochum, Germany; Christian-Albrechts University, Kiel, Germany; Free University Hospital (VUB), Brussels, Belgium; Hospital La Paz, Madrid, Spain and Charing Cross Hospital, London, UK.
CLINICAL FOCUS SESSION
Ischemic Heart Disease: Clinical Use of MR
Room C205
13:30 – 15:30

Chairs: Albert de Roos, Keynote Speaker
Pamela K. Woodard

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:21</td>
<td>213.</td>
<td>2D and 3D Segmented TurboFLASH for the Visualization of Myocardial Injury.</td>
<td>O. Simonetti, R.J. Kim, D.S. Fieno, H. Hillenbrand, E. Wu, J.M. Bundy, J.P. Finn and R.M. Judd.</td>
<td>Siemens Medical Systems and Northwestern University Medical School, Chicago, IL, USA.</td>
</tr>
<tr>
<td>14:33</td>
<td>214.</td>
<td>Left Ventricular Phase Contrast Velocity Mapping in 34 Patients with Ischaemic Heart Disease.</td>
<td>B. Schneider, M. Markl, C. Geiges, J. Winterer, J. Hennig and M. Langer.</td>
<td>University of Freiburg, Freiburg, Germany.</td>
</tr>
</tbody>
</table>
MR Imaging of Articular Cartilage
Room A102
16:00 – 18:00

Chairs: R. Mark Henkleman
Gabrielle Bergman

16:00 218. Watershed Segmentation of High Resolution Articular Cartilage Images for Assessment of OsteoArthritis.
S. Ghosh, O. Beuf, D.C. Newitt, M. Ries, N. Lane and S. Majumdar.
University of California, San Francisco, CA, USA and BioEngineering Graduate Group, UCSF-UC Berkeley, CA, USA.

16:12 219. No Apparent Progressive Change to Knee Cartilage Volumes Over One Year in Rheumatoid and Osteoarthritis.
United Bristol Healthcare Trust, Bristol, UK; University of Manchester, Manchester, UK; University of Bristol, Bristol, UK and AstraZeneca, Macclesfield, UK.

Stanford University, Stanford, CA, USA.

16:36 221. T2 Reveals Spatial Collagen Architecture in Articular Cartilage: A Comparative Quantitative MRI and Polarized Light Microscopic Study.
Kuopio University Hospital and University of Kuopio, Kuopio, Finland.

16:48 222. Spatial Variation in Cartilage T2 of the Knee Joint.
The Penn State University College of Medicine, Hershey PA, USA; Children's Hospital Medical Center, Cincinnati, OH, USA and University of Cincinnati College of Medicine, Cincinnati, OH, USA.

17:00 223. Spatial Variation of Cartilage T2 in the Immature Pediatric Knee.
Children's Hospital Medical Center, Cincinnati, OH, USA and University of Cincinnati College of Medicine, Cincinnati, OH, USA.

17:12 224. The Dynamics and Equilibria of Cartilage Gd-DTPA2 Uptake.
University of Pennsylvania, School of Medicine, Philadelphia, PA, USA.

17:24 225. The Role of T2 and Gd-DTPA Enhanced T1 Relaxation in Mapping Degraded Articular Cartilage.
A.M. Herneth, V. Mlynarik, M. Huber, A. Ba-Ssalamah, H. Imhof and S. Traatnig.
University of Vienna, Vienna, Austria.

University of Toronto, Toronto, Ontario, Canada.

17:48 227. Proteoglycan Distribution Across Articular Cartilage as Determined by 23Na MRI.
E.M. Shapiro, A. Borthakur, J.S. Leigh and R. Reddy.
University of Pennsylvania, Philadelphia, PA, USA.
MR Imaging of Brain: Multiple Sclerosis
Room A108
16:00 – 18:00

Chairs: Scott W. Atlas
 Kenneth R. Maravilla

16:00 228. Young Investigator Awards Finalist: Magnetization Transfer and Multi-Component T2 Measurements with Histopathologic Correlation in an Experimental Model of Multiple Sclerosis.
John P. Robarts Research Institute and London Health Sciences Center, London, Ontario, Canada.

16:20 229. Statistical Analysis of MTR Histograms in Multiple Sclerosis.
University College London, London, UK.

M. Rovaris, M. Bozzali, G. Santuccio, M.P. Sormani, G. Comi and M. Filippi.
H. San Raffaele, Milan, Italy.

16:44 231. Multiple Sclerosis Functional Composite Related to MRI Parameters.
University Hospital 'Vrije Universiteit', Amsterdam, The Netherlands.

16:56 232. Magnetization Transfer Ratio and Mean Diffusivity of Normal-Appearing White and Gray Matter from Patients with MS.
M. Cercignani, M. Bozzali, G. Iannucci, G. Comi and M. Filippi.
University of Milan, Milan, Italy.

17:08 233. Interferon β-1b and Intravenous Methylprednisolone Enhance Lesion Recovery In Relapsing Remitting Multiple Sclerosis (RRMS) Patients.
National Institutes of Health, Bethesda, MD, USA.

Vrije Universiteit Academic Hospital, Amsterdam, The Netherlands; San Raffaele Hospital, Milan, Italy; Klinikum Grosshadern, Munich, Germany; Institute of Neurology, London, UK; Ludwig Maximillian Hospital, Wurzburg, Germany and Kantonsspital, Basel, Switzerland.

17:32 235. Quantitative T1 Mapping in Multiple Sclerosis Pre and Post Gd CR Administration.
W.D. Rooney, F. Telang, L. Krupp, P. Coyle and C.S. Springer.
Brookhaven National Laboratory, Upton, NY, USA and State University of New York, Stony Brook NY, USA.

17:44 236. The Effect of Gadolinium Enhancing Lesions on Whole Brain Atrophy in Relapsing-Remitting Multiple Sclerosis.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.
MR PHYSICS AND TECHNIQUES FOR CLINICIANS:
Room A201
16:00 – 18:00

Chairs: Frank R. Korosec
 Joseph C. McGowan

Educational Objectives
Upon completion of this course, participants should be able to:

• Define and describe the fundamental principles of MR imaging, including spin magnetization, the Larmor relationship, relaxation phenomena, and the process of using the spin magnetization to produce an image;
• Explain imaging pulse sequences based upon spin and gradient echoes, including fast spin echo and echo planar techniques;
• Design MR imaging protocols for diagnostic applications considering image contrast, spatial resolution, acquisition time, signal-to-noise ratio, and artifacts;
• Describe the principles and capabilities of various advanced MR techniques including perfusion and diffusion, spectroscopy, interventional MRI, and cardiac MR imaging.

Materials to accompany today’s lectures can be found at http://jcmsgi.rad.upenn.edu/jmigowan/ismr/ismrm.html.

16:00 Spin Echo Imaging, Including Contrast Enhancement.
 Paul Tofts.

16:40 Gradient Echo Imaging.
 Frank R. Korosec.

17:20 Fast Spin Echo Imaging.
 Joseph C. McGowan.
<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>237. A CBF-Based Event-Related Brain Activation Paradigm: Characterization of Impulse-Response Function and Comparison to BOLD.</td>
<td>Y. Yang, W. Engelien, H. Pan, S. Xu, D.A. Silbersweig and E. Stern.</td>
<td>Cornell University Medical College, New York, NY, USA and Memorial Sloan-Kettering Cancer Center, New York, NY, USA.</td>
</tr>
<tr>
<td>16:12</td>
<td>238. Temporal Clustering Analysis for Tracing the Maximal fMRI Response in Human Brain.</td>
<td>Y. Liu, P.T. Fox, H-L. Liu, J. Mao, M. Matsuda and J.H. Gao.</td>
<td>University of Texas Health Science Center, San Antonio, TX, USA and University of Florida, Gainesville, FL, USA.</td>
</tr>
<tr>
<td>16:24</td>
<td>239. Comparison of Temporal Response in Perfusion and BOLD Based Event-Related Functional MRI.</td>
<td>H-L. Liu, Y. Pu, L.D. Nickerson, Y. Liu, P.T. Fox and J-H. Gao.</td>
<td>University of Texas Health Science Center, San Antonio, TX, USA.</td>
</tr>
<tr>
<td>16:36</td>
<td>240. Optimum Voxel Size in fMRI.</td>
<td>J.S. Hyde, B.B. Biswal and A. Jesmanowicz.</td>
<td>Medical College of Wisconsin, Milwaukee, WI, USA.</td>
</tr>
<tr>
<td>17:00</td>
<td>242. Whole-Brain fMRI Activation from a Finger Tapping Task Examined with Independent Component Analysis.</td>
<td>C.H. Moritz, D. Cordes, M.E. Meyerand and V.M. Haughton.</td>
<td>University of Wisconsin, Madison, WI, USA.</td>
</tr>
<tr>
<td>17:36</td>
<td>245. Comparing Silent and Overt Speech Using fMRI: Head Motion, Articulatory Motion, and Cortical Activation.</td>
<td>J. Huang, T.H. Carr and Y. Cao.</td>
<td>Michigan State University, East Lansing, MI, USA.</td>
</tr>
<tr>
<td>17:48</td>
<td>246. Real-Time Detrending of Physiological Noise from fMRI Data.</td>
<td>L.P. Panych, S-S. Yoo and G.P. Zientara.</td>
<td>Brigham and Women’s Hospital, Boston MA, USA and Massachusetts Institute of Technology, Cambridge MA, USA.</td>
</tr>
</tbody>
</table>
Tumor Animal Models: MR Imaging and MR Spectroscopy
Room C106
16:00 – 18:00

Chairs: Stephen R. Williams
Natarajan Raghunand

16:00 247. High Resolution In Vivo Imaging of Transgene Expression.
R. Bhorade, A. Moore, H. Benveniste and R. Weissleder.
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Duke University Medical Center, Durham, NC, USA.

16:12 248. Prolonged T1 Relaxation Time Shows Early Tissue Response in Apoptotic Cell Death Induced by Gene Therapy.
University of Kuopio and Kuopio University Hospital, Kuopio, Finland.

Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

University of California, San Francisco, CA, USA.

16:48 251. Monitoring the Effects of Chemotherapy by 31P and TQF23Na NMR.
P.M. Winter, H. Poptani and N. Bansal.
University of Pennsylvania, Philadelphia, PA, USA.

17:00 252. Non-Metastatic and Metastatic Rodent Prostate Tumors Are Distinguished Using High Spectral and Spatial Resolution MRI and an Iron Oxide Contrast Agent.
University of Chicago, Chicago, IL, USA.

M.L. García-Martín, M.A. García-Espinosa and S. Cerdán.
Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Madrid, Spain.

17:24 254. Measurements of Tumor Oxygen Tension by Dynamic Contrast Enhanced MRI.
Z. Wang, M-Y. Su and O. Nalcioglu.
University of California, Irvine, CA, USA.

17:36 255. In Vivo Oxygen Tension Mapping of RIF-1 Tumors via Fluorine-19 NMR During 5-Fluorouracil Chemotherapeutic Intervention.
Worcester Polytechnic Institute, Worcester, MA, USA and University of Massachusetts Medical School, Worcester, MA, USA.

17:48 256. Spatial Matching of Metabolic Ratios, as Probed by 1H-CSI, with Hypoxia in 9L-Gliomas.
Academic Hospital, Nijmegen, the Netherlands and Delft University of Technology, Delft, the Netherlands.
Coronary Artery Imaging
Room C205
16:00 – 18:00

Chairs: Andre Duerinckx
Zahi Adel Fayad

16:00 257. **High Resolution In Vivo Imaging of Atherosclerotic Plaques with a New Intravascular Coil.**
Mount Sinai Medical Center, New York, NY, USA and Magna Lab, New York, NY, USA.

16:12 258. **Noninvasive In vivo Human Coronary Artery Lumen and Wall Imaging Using Black Blood MR.**
Mount Sinai School of Medicine, New York, NY, USA.

16:24 259. **In Vivo Imaging of Coronary Artery Wall in Humans Using Navigator and Free-Breathing.**
Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA and Philips Medical System, Best, the Netherlands.

16:36 260. **Coronary Vessel Wall MR Imaging: Initial Experience.**
J. Zheng, D. Li, J.P. Finn, O. Simonetti and F.M. Cavagna.
Bracco, S.p.A. Milan, Italy; Northwestern University and Siemens Medical Systems, Chicago, IL, USA.

16:48 261. **Fast Spin-Echo Black-Blood Coronary MRA.**
M. Stuber, R.M. Botnar, K.V. Kissinger and W.J. Manning.
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA and Philips Medical Systems, Best, the Netherlands.

17:00 262. **3D Coronary Artery Imaging with Multiple Breath-Holds and Real-Time Adaptive Positive Correction.**
S.M. Shea, R. Kroeker, V. Deshpande, G. Laub, J. Zheng, J.P. Finn and D. Li.
Northwestern University, Siemens Medical Systems, and Bracco Diagnostics, Chicago, IL, USA.

17:12 263. **Improved MRI Assessment of Coronary Artery Flow: Prospective Real-Time Correction for Through-Plane Motion.**
Leiden University Medical Center, Leiden, The Netherlands and University and ETH, Zurich, Switzerland.

17:24 264. **Automated Mapping of Vessel Trajectories for Improved Tracking in Coronary MR Angiography.**
M. Saranathan, C.J. Hardy and T.K.F. Foo.
General Electric Medical System, Waukesha, WI, USA and General Electric Corporate Research and Development, Schenectady, NY, USA.

17:36 265. **Improvement of MR Coronary Angiography in Patients Using the New Blood Pool Contrast Agent Clariscan™.**
University Hospital Vrije Universiteit, Amsterdam, The Netherlands and University Hospital, Rotterdam, The Netherlands and Nycomed Amersham Imaging, Munich, Germany.

17:48 266. **High Resolution Breath-Hold Volume Targeted 3D Magnetic Resonance Coronary Angiography Using Multi-shot Segmented EPI in a Dedicated Cardiac Scanner.**
University Hospital, Rotterdam, The Netherlands and Siemens Medical Systems, Erlangen, Germany.
New Sequences and Reconstruction Methods

Room C209
16:00 – 18:00

Chairs: Richard L. Ehman
R. Scott Hinks

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
</tr>
</thead>
</table>
| 16:00 | **267.** A Double Quantum fMRI Study of Motor Activation Using a Single-Shot Spiral Data Acquisition at 4T.
Princeton University, Princeton, NJ, USA and University of Pennsylvania Medical Center, Philadelphia, PA, USA. |
| 16:12 | **268.** Mapping the Absolute Value of M_0 Using Dipolar Field Effects.
S. Gutteridge, C. Ramanathan and R. Bowtell.
University of Nottingham, Nottingham, UK. |
| 16:24 | **269.** Reconstruction of Projections Using an Opto-Electronic Processor.
L. Dougherty, H.K. Song, J. LaFuse and T. Turpin.
Hospital of the University of Pennsylvania, Philadelphia, PA, USA and Essex Corporation, Columbia, MD, USA. |
| 16:36 | **270.** Dynamic Imaging with Multiple Resolutions Along Phase-Encode and Slice-Select Dimensions.
Brigham and Women's Hospital and Children's Hospital, Boston MA, USA and Massachusetts Institute of Technology, Cambridge MA, USA. |
| 16:48 | **271.** Tradeoff of SNR and Time by Conjugation in Multiband Encoding,
Sunnybrook and Women's Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada. |
| 17:00 | **272.** A Generalized Basis Approach to Spatial Encoding with Coil Arrays: SMASH-SENSE Hybrids and Improved Parallel MRI at High Accelerations.
D.K. Sodickson.
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. |
| 17:12 | **273.** Partially Parallel Imaging with Localized Sensitivities (PILS).
M.A. Griswold, P.M. Jakob, M. Nittka, J.W. Goldfarb and A. Haase.
University of Würzburg, Würzburg, Germany and University Hospital Nijmegen, Nijmegen Netherlands. |
| 17:24 | **274.** Variable Density AUTO-SMASH Imaging.
R. Heidemann, M. Griswold, A. Haase and P.M. Jakob.
Universität Würzburg, Würzburg, Germany. |
| 17:36 | **275.** Optimisation of SMASH Image Reconstructions for Robust In Vivo Imaging.
C.A. McKenzie and D.K. Sodickson.
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. |
University and ETH Zurich, Zurich, Switzerland and Philips Research, Hamburg, Germany. |
CORPORATE FORUM:
Disease Management: Implications for Industry
Room A207
18:15 – 19:45

Chair: Jeffrey C. Weinreb
STUDY GROUP:
MR in Drug Research
Room A102
19:30 – 21:30

Business Meeting
 Agenda TBA

Scientific Meeting
 Speakers TBA
 • Overview: Goals of the Study Group
 • The FDA Perspective
 • The Industry Perspective
 • The Investigator Perspective
 • Discussion
STUDY GROUP:
High Field Systems & Applications
Room A108
19:30 – 21:30

Business Meeting

- Welcome
 Douglas A.C. Kelley, Chair
 Massachusetts General Hospital, Boston, MA, USA

- Nominations for the Executive Committee
 Gary H. Glover, Secretary
 Stanford University, Stanford, CA, USA

Scientific Meeting

- Regulatory Status of High Field Systems
 Daniel J. Schaeffer
 GE Medical Systems, Milwaukee, WI, USA

- Discussion: Future Directions for High Field Systems and Applications
 Moderator: Kamil Ugurbil, University of Minnesota, Minneapolis, MN, USA
 - Magnet Technology for High Field Systems
 John Bird
 Magnex Scientific, Ltd., England, UK
 - Gradient Technology for High Field Systems
 Franz Schmitt
 Siemens Medical Systems, Erlangen, Germany
 - RF Technology for High Field Systems
 Jeffrey R. Fitzsimmons
 University of Florida, Gainesville, FL, USA
 - Clinical Applications of High Field Systems
 Matt A. Bernstein
 Mayo Clinic, Rochester, MN, USA
 - Animal Research Using High Field Systems
 Stephen J. Blackband
 University of Florida, Gainesville, FL, USA
 - Human Research Using High Field Systems
 Rolf Gruetter
 University of Minnesota, Minneapolis, MN, USA

- Discussion
STUDY GROUP:
Diffusion & Perfusion MR
Room A201
19:30 – 21:30

Business Meeting

Welcome

Chair: Mathias Hoehn

Report on the Progress of the Study Group (membership, etc.)
Michael E. Moseley
Secretary

Call for Nominations for 2001 Governing Committee Ballot
Mathias Hoehn
Chair

New Business

Scientific Meeting

Chair: David G. Norris, Program Director

Anatomical Connectivity Studies: A New Application for DTI?
Susumu M. Mori
Johns Hopkins School of Medicine, Baltimore, MD, USA

Clinical Utility/Update of Modern Tagging Procedures
Eric C. Wong
UCSD Thornton Hospital, La Jolla, CA, USA

DWI/PWI for Clinical Stroke Trials: Progress Update
Steven Warach
National Institutes of Health, Bethesda, MD, USA
STUDY GROUP:
Musculoskeletal MR
Room C106
19:30 – 21:30

Business Meeting

- Reading of Charter
- Introduction of Officers
- Nominations for 2001 Officers
- Discussion of General Purpose of the Study Group

Scientific Meeting

Controversies in Cartilage Imaging

Is There Any Optimal Cartilage Pulse Sequence?
Thomas R. McCauley
Yale University School of Medicine, New Haven, CT, USA

Is There Any Clinical Applicability or Clinical Research Applicability to New Pulse Sequences?
How Much Clinical Utility?
Sharmila Majumdar
University of California, San Francisco, CA, USA

Utilizing Radiology, Particularly MR Imaging in Clinical Trials.
Philipp Lang
Stanford University, Stanford, CA, USA

Potential Uses of MR Imaging in Research Studies on Surgical Approaches to Cartilage Loss and Defects
Carl S. Winalski
Brigham and Women's Hospital, Boston, MA, USA

Evaluation of Early Cartilage Loss with Intravenous Gadolinium
Adil Bashir
Beth Israel Deaconess Medical Center, Boston, MA, USA

Jürg Hodler
University of Zürich, Zürich, Switzerland

Virtual Arthroscopy
Christopher F. Beaulieu
Stanford University Medical Center, Stanford, CA, USA
MORNING CATEGORICAL COURSE
Cardiac MR Imaging
Room C205
07:00 – 08:00

Chairs: Andre Duerinckx
 Cynthia B. Paschal
 Roderic I. Pettigrew

Educational Objectives
Upon completion of this course, participants should be able to:

- Describe basic areas of routine and promising clinical use of MR in assessing cardiovascular disease;
- Describe basic areas of MR use which are both routine and promising in assessing cardiovascular disease;
- Explain the MR methodology and techniques used to assess acquired and congenital heart disease;
- Apply MR protocols for the evaluation of cardiac morphology, function, viability and blood flow;
- Describe approaches for cardiac data analysis and presentation.

The final five minutes of each talk will be reserved for questions.

07:00 Cardiac Flow Measurement Methods.
 David N. Firmin.

07:30 Adult Cardiac MR.
 Pamela K. Woodard.

MORNING CATEGORICAL COURSE
fMRI in Neuro-Psychiatric Disease and Treatment:
fMRI of Focal Neurological Disorders
Room A201
07:00 – 08:00

Chairs: Linda Chang
 John A. Detre

Educational Objectives
Upon completion of this course, participants should be able to:

- Identify the special issues facing clinicians and researchers who wish to apply functional MRI to patient populations;
- Describe fMRI studies that have been successfully accomplished in neurological and psychiatric disorders;
- List a number of issues that remain to be resolved before widespread use of fMRI in patient populations is feasible;
- Describe the role and potential of animal models in increasing the understanding of fMRI studies in disease;
- Explain the principles and theory of pharmacological (ph) MRI;
- Appraise the potential for phMRI in humans and predict the impact on disease treatment.

07:00 Stroke.
 Steven C. Cramer.

07:15 Pre-Surgical Planning in Tumor Surgery.
 Victor M. Haughton.

07:30 Epilepsy.
 Mark R. Symms.

07:45 Discussion.
MORNING CATEGORICAL COURSE
Abdominal Imaging
Room A207
07:00 – 08:00

Chair: Donald G. Mitchell

Educational Objectives
Upon completion of this course, participants should be able to:

- Implement modern MR applications for diagnosing focal and diffuse liver disease;
- Incorporate into their practices recent developments for MR imaging of the pancreas and biliary tract, including MR cholangiopancreatography;
- Use MRI to diagnose extrahepatic disease, such as that of the bowel and peritoneum, as well as vascular disease using state of the art MR angiographic techniques.

07:00

MRCP Pancreas.
Myeong-Jin Kim.

07:50

Questions.

MORNING CATEGORICAL COURSE
The Nano-Meter Film: How MRS and MRI Can Probe Tissue Microstructure
Room C106
07:00 – 08:00

Chairs: Chris Boesch
R. Mark Henkelman

Educational Objectives
Upon completion of this course, participants should be able to:

- Describe methods in MRS and MRI that allow studies of tissue ultra-structure;
- Identify areas in which MR can contribute to the knowledge of tissue organization;
- Evaluate potential applications and limitations of MR methods to study compartmentation, order, and transport processes in vivo;
- Generate an overview of advanced methods in MRS and MRI that give information on the nanometer scale;
- Explain the influence of tissue structure upon MR parameters.

The final five minutes of each talk will be set aside for questions.

07:00

Magnetization Transfer MRI.
R. Mark Henkelman.

07:30

Magnetization Transfer MRS.
Dieter Leibfritz and Wolfgang Dreher.

08:00

Adjournment.
PLENARY LECTURES
Genetic Diseases: Diagnosis and Treatment
Ballroom
08:15 – 09:30

Chairs: Linda Chang
Arend Heerschap

Educational Objectives
Upon completion of this session, participants should be able to:

- Describe the role of imaging methods in general in the diagnosis and treatment evaluation of genetic diseases.
- Identify MRI and MRS parameters of particular usefulness to characterize inherited metabolic brain diseases.
- Describe some cases of these diseases where unambiguous diagnosis is possible on the basis of MRI and/or MRS approaches.
- Explain how the study of transgenic animals with missing or modified proteins may help understand the nature of genetic diseases.
- Describe what the potentials of MR are to characterize the phenotype of these animals.

08:15 277. Interfaces of Genetic Diagnosis and Treatment with Imaging Methods.
Arthur S. Beaudet.
Baylor College of Medicine, Houston, TX, USA.

08:40 278. MRI and MRS of Genetic Brain Diseases.
Marjo S. van der Knaap.
Free University Hospital, Amsterdam, The Netherlands.

Alan Koretsky.
National Institutes of Health, Bethesda, MD, USA.
Perfusion/Diffusion Studies of Cerebral Ischemia: Animal Models
Room A102
10:30 – 12:30

Chairs: Mathias Hoehn
Peter van Zijl

10:30 280. Mismatch Between Infarct Size and Functional Deficit in Rat Middle Cerebral Artery Occlusion Model of Stroke: Cytoprotective Treatment Does Not Preserve Brain Function.
Novartis Pharma AG, Basel, Switzerland.

10:42 281. Early Detection of Irreversible Cerebral Ischemia Using Dispersion of MRI Relaxation Time T_1p.
University of Kuopio, Kuopio, Finland.

10:54 282. Functional MRI of Reorganization in Rat Brain After Stroke.
Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

N.G. Harris, V. Gauden, P.A. Fraser, S.R. Williams and G.J.M. Parker.
University of Cambridge, Cambridge, UK; Kings College London, London, UK; University of Manchester, Manchester UK and Institute of Neurology, London, UK.

Max-Planck-Institute for Neurological Research, Cologne, Germany.

C. Beaulieu, E. Busch, A. de Crespigny, F. Wiegand and M. Moseley.
Stanford University, Stanford, CA, USA; University of Alberta, Edmonton, Alberta, Canada and Neurologische Universitätsklinik, Essen, Germany.

11:42 286. Mild Hypothermia Attenuates C-fos and Hsp70 mRNA Expression and Transient Water ADC Reduction during Permanent Focal Ischemia in Rats.
University of California and Department of Veterans Affairs Medical Center, San Francisco, CA, USA.

11:54 287. Effect of Erythropoietin Overexpression to Cerebral Blood Flow and Focal Ischemic Brain Lesion as Measured by MRI.
P.R. Allegrini, D. Ekatodramis, M. Gassmann and C. Wiessner.
Novartis Pharma Ltd, Basel, Switzerland and University of Zürich-Irchel, Zürich, Switzerland.

12:06 288. Region-Specific Increases in Cerebral Blood Flow in Response to Systemic Hypotension Induced via a Ganglionic Blocking Agent: Time Course Study Using Arterial Spin Labelling.
M.F. Lythgoe, D.L. Thomas, J. Dean, W.S. Peart, R.J. Ordidge and D.G. Gadian.
University College London Medical School and University College London, London, UK.

12:18 289. 23Na MRI for the Detection of Dead Tissue Following Temporary Focal Cerebral Ischemia.
Washington University, St. Louis, MO, USA.
MRS and MRI of Brain Degeneration and Disorders
Room A108
10:30 – 12:30

Chairs: Dorothee P. Auer
Brian D. Ross

DVA Medical Center, University of California, San Francisco, CA, USA; Chang Gung Memorial Hospital, Taiwan and University of Kuopio, Kuopio, Finland.

National Institutes of Health, Bethesda, MD, USA.

10:54 292. Differentiating Alzheimer's Diseases Using Artificial Neural Network Analysis of In Vivo Proton Spectroscopy.
PLA General Hospital, Beijing, China; GE Medical Systems, Beijing, China and GE Medical Systems, Milwaukee, WI, USA.

11:06 293. Longitudinal Decline of NA in Alzheimer's Disease.
Stanford University, Stanford, CA, USA and SRI International, Menlo Park, CA, USA.

DVA Medical Center and University of California, San Francisco CA, USA and University of Southern California, Los Angeles, CA, USA.

University of Frankfurt/Main, Frankfurt, Germany.

11:42 296. Cognitive Dysfunction Lateralizes with NAA in Multiple Sclerosis.
Brookhaven National Laboratory, Upton, NY, USA and State University of New York, Stony Brook, NY, USA.

11:54 297. Disease Duration Influences the Relationship Between Brain Axonal Injury, Spinal Cord Atrophy and Disability in Multiple Sclerosis.
S. Narayanan, N. De Stefano, S. Francis, M.C. Tartaglia, R. Arnaoutelis and D.L. Arnold.
Montreal Neurological Institute, Montreal, Quebec, Canada and University of Siena, Siena, Italy.

12:06 298. 13C MRS Further Specifies Biochemical Abnormalities Detected by 1H MRS in Human Brain.
Huntington Medical Research Institutes, Pasadena, CA, USA and Rudi Schulte Research Institutes, Santa Barbara, CA, USA.

12:18 299. Recommendations for Brain Phenylalanine Levels in Adult Individuals with Phenylketonuria.
Childrens Hospital Los Angeles, Los Angeles, CA, USA.
Edational Objectives
Upon completion of this course, participants should be able to:

- Select appropriate MR pulse sequences for evaluation of articular cartilage abnormalities;
- Recognize MR imaging findings in articular cartilage injury and apply them to the interpretation of clinical studies;
- Describe areas of active clinical research in articular cartilage imaging and quantitative evaluation;
- Define the role of contrast media in analyzing internal derangements of joints, including both indirect and direct MR arthrography;
- Assess the value of high resolution, non-contrast MR imaging of joints;
- Identify clinical situations in which intravenous contrast medium may be useful in evaluation of the synovium.

10:30 Intra-Articular MR Arthrography.
William E. Palmer.

10:55 Indirect MR Arthrography with Intravenous Gadolinium.
Mark Schweitzer.

11:20 Assessment of Synovial Inflammation with Intravenous Gadolinium.
Mikkel Østergaard.

11:45 High Resolution, Non-Contrast MR Imaging.
Hollis G. Potter.

12:10 Discussion.
CLINICAL CATEGORICAL:
MR Contrast Media
Room A201
10:30 – 12:30

Chair: Val M. Runge

Educational Objectives
Upon completion of this course, participants should be able to:

- List the different contrast media currently approved for MR;
- Describe the safety profile for each agent;
- List common known adverse reactions;
- Explain the clinical indications for each agent;
- Select appropriate imaging techniques;
- List the current areas of application of contrast enhanced MRA;
- Recommend new applications to referring clinicians;
- Identify the principal areas of application of MR contrast media in clinical practice.

10:30
Approved Agents, Safety, and Efficacy.
Val M. Runge.

10:55
Review of CNS Indications.
Val M. Runge.

11:20
Contrast-enhanced MRA.
Michael V. Knopp.

11:45
Review of Body Indications.
Michael V. Knopp.
Rapid Imaging II
Room A207
10:30 – 12:30

Chairs: Axel Haase
Dwight G. Nishimura

10:30 300. Young Investigator Awards Finalist: Interactive Fast Spin Echo Imaging.
Mayo Clinic, Rochester, MN, USA.

10:50 301. Analysis and Reduction of the Transient Response in SSFP Imaging.
D.G. Nishimura and S. Vasanawala.
Stanford University, Stanford, CA, USA.

11:02 302. RARE/EPI MR-CAT SCAN.
C. Hillenbrand, D. Hahn, A. Haase and P.M. Jakob.
Universität Würzburg, Würzburg, Germany.

P. Börnert, B. Aldefeld and H. Eggers.
Philips Research Laboratories, Hamburg, Germany.

H.E. Cline, X. Zong and N. Gai.
GE Corporate Research and Development, Schenectady, NY, USA and GE Medical Systems, Milwaukee, WI, USA.

N-K. Chen and A.M. Wyrwicz.
Northwestern University, Evanston, IL, USA.

J.H. Duyn and P. van Gelderen.
National Institutes of Health, Bethesda, MD, USA.

G.J. Barker.
University College London, London, UK.

W. Fang, F.S. Pereles, J. Bundy, R. Kim, E. Wu, O. Simonetti and P. Finn.
Northwestern University and Siemens Medical Systems, Chicago IL, USA.

University of Manchester, Manchester, UK and AstraZeneca, Macclesfield, Cheshire, UK.
Myocardial Viability: Basic Science

Room C106
10:30 – 12:30

Chairs: Robert M. Judd
Maythem Saeed

10:30 **310.** Simultaneously Monitoring Gd-DTPA-Induced T_1 and T_2^* Signal Intensities Helps Assess Myocardial Viability.
National Research Council, Winnipeg, Manitoba, Canada; Dayton VA Medical Center, Dayton, OH, USA and University of Manitoba, Winnipeg, Manitoba Canada.

10:42 **311.** Determining Myocardial Viability in a Chronic Occlusion Canine Model Using MRI with a Constant Infusion of Gd-DTPA.

10:54 **312.** The Gd-DTPA Partition Coefficient is Elevated in Chronical Infarction in Humans.
S. Flacke, S.E. Fischer and C.H. Lorenz.
Barnes-Jewish Hospital at Washington University Medical Center, St. Louis, MO, USA and Philips Medical Systems, Best, The Netherlands.

11:06 **313.** Dobutamine-stress MRI of the Heart in Cardiac-Specific VEGF Knock-Out Mice.
Genentech, Inc., South San Francisco, CA, USA and University of California at San Diego, La Jolla, CA, USA.

Aarhus University Hospital, Aarhus, Denmark.

11:30 **315.** MRI Assessment of Myocardial Blood Volume Changes During Hypoxia and Adenosine Challenge Using Steady-State Contrast Agent MION.
Massachusetts General Hospital, Charlestown, MA, USA and CIMIT, Boston, MA, USA.

11:42 **316.** Manganese MRI Enhancement of the Mouse Heart During Dobutamine Inotropy.
Carnegie Mellon University, Pittsburgh, PA, USA; University of Pittsburgh Medical School, Pittsburgh, PA, USA and National Institutes of Health, Bethesda, MD, USA.

11:54 **317.** Simultaneous Assessment of Myocardial Function and Tissue Characterization in a Canine Infarct Model Using MTC.
National Institutes of Health, Bethesda, MD, USA.

12:06 **318.** Longitudinal Evaluation of LV Remodeling with MRI After Myocardial Infarction in the Rat: Quantification of Efficacy of ACE-Inhibition.
Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, USA.

12:18 **319.** T_1 Reduced Properties of Methaemoglobin: Application to Direct MR Thrombus Imaging.
Nottingham University, Nottingham, UK.
Wednesday AM

fMRI: Clinical Disorders
Room C205
10:30 – 12:30

Chairs: Keith R. Thulborn
 Steven C. Cramer

 Z. Li, G. Wu, X. Zhao, P. Antuono, J. Jones and S. Li.
 Medical College of Wisconsin, Milwaukee, WI, USA.

 MCP Hahnemann University, Philadelphia, PA, USA.

10:54 322. Brain Activation During a Motor Task in Amyotrophic Lateral Sclerosis.
 Yale University School of Medicine, New Haven, CT, USA; Brookhaven National Laboratory, Upton, NY, USA and
 University of California, San Francisco, CA, USA.

11:06 323. fMRI Mapping of Language Processing: Comparison with Wada Testing and Cortical Stimulation.
 Yale University School of Medicine, New Haven, CT, USA.

11:18 324. Reorganisation of Sensorimotor Function in Children Following Vascular Damage to the Middle Cerebral Artery Territory: An fMRI and Somatosensory Evoked Potential Study.
 University College London Medical School and Great Ormond Street Hospital for Children, London, UK.

11:30 325. Involuntary Responses to Auditory Rhythms with Single Event fMRI: A Clinical Tool for Assessing Memory and Attention Pathways.
 University of Rochester, Rochester, NY, USA.

 University Hospital, Gent, Belgium.

 University of California, Irvine, CA, USA; Kwangju Institute of Science and Technology (KJIST), Kwangju, Korea;
 Dongshin University, Naju, Korea and Chun Nam University, Kwangju, Korea.

12:06 328. Functional MRI of Lipreading in Normal Hearing and Deaf Subjects.
 House Ear Institute and University of Southern California, Los Angeles, CA, USA.

 University of California, Los Angeles, CA, USA.
MR Systems and Gradients
Room C209
10:30 – 12:30

Chairs: Steven M. Conolly
Labros Petropoulos

Korea University, Seoul, Korea.

10:42 331. Ultra-Short Gradient Coil Design.
B. Zhang, B. Chroik and B. Rutt.
University of Western Ontario and The John P. Robarts Research Institute, London, Ontario, Canada.

10:54 332. Gradient System with Continuously Variable Field Characteristics.
Siemens Medizintechnik, Erlangen, Germany and Universität Würzburg, Würzburg, Germany.

L.S. Petropoulos.
Picker Medical Systems, Cleveland, OH, USA.

L.S. Petropoulos.
Picker Medical Systems, Cleveland, OH, USA.

11:30 335. Savoring the SUSHI Method: A Gradient Coil Shielding Menu.
Case Western Reserve University, Cleveland, OH, USA.

GE Medical Systems, Milwaukee, WI, USA and Stanford University School of Medicine, Stanford, CA, USA.

11:54 337. Effect of Trapezoid Gradient Flat-top Width on Acoustic Noise and Magnetic Field Oscillations in MR Imagers.
The University of Western Ontario and John P. Robarts Research Institute, London, Ontario, Canada.

12:06 338. Signal-to-Noise Ratio Gain in Prepolarized MRI.
P.N. Morgan, S. Nandi, H. Nam and D. Spence.
Texas A&M University, College Station, TX, USA.

T. Tsukamoto, N. Tasaka, A. Nabetani, H. Sato, L. ter Beek and T. Nakada.
GE Yokogawa Medical Systems, Hino, Tokyo, Japan and University of Niigata, Niigata, Japan.
GOLD CORPORATE MEMBER LUNCHTIME SYMPOSIUM
Phils Medical Systems
Neuro and Cardiac MRI: The Next Challenges
Room C112
12:30 – 13:30

Introduction: Changing How the World Looks at MR
Peter Luyten
Philips Medical Systems, Best, Netherlands

Three-Dimensional Imaging of Human Axonal Tracts Using Diffusion Tensor Imaging
Susumu Mori
Johns Hopkins University Medical School, Baltimore, MD, USA

Advanced Coronary MRA Methodologies
Matthias Stuber
Beth Israel Deaconess Medical Center, Boston, MA, USA
POSTER WALKING TOUR
MRI Microscopy
Wednesday, 5 April, 2000
Hall C
13:30 – 15:30

Chairs: Gheorghe D. Mateescu
Richard W. Bowtell

Please see page 117 for details.

POSTER WALKING TOUR
Registration, Segmentation, and Tissue Characterization
Wednesday, 5 April, 2000
Hall C
13:30 – 15:30

Chairs: Max A. Viergever
Louis Lemieux

Please see page 118 for details.
CLINICAL FOCUS SESSION
Gastrointestinal Fast MRI
Room C205
13:30 – 15:30

Chairs: Russell N. Low, Keynote Speaker
Myeong-Jin Kim

13:30 **Keynote.**

13:45 **340.** MR Colography Using CO\textsubscript{2} and Single-Shot Half-Fourier RARE.
Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

13:57 **341.** Recurrent Pyogenic Cholangitis: Comparison of MR Cholangiography and Direct Cholangiography.
M.S. Park, J-S. Yu, M-J. Kim and K.W. Kim.
Yonsei University College of Medicine, Seoul, South Korea.

Toshiba Medical Systems R&D Center and Toshiba Nasu Operations, Tochigi, Japan.

14:21 **343.** Living Donor Liver Transplants (LDLT): A Comprehensive Pre-Surgical MRI Evaluation.
University Hospital, Essen, Germany and Siemens Medical Systems, Erlangen, Germany.

14:33 **344.** MR Imaging of Intestinal Disease with Oral and Rectal Water Soluble Contrast Material:
Comparison of SSFSE and Gadolinium-Enhanced Fat Suppressed SPGR MRI.
R.N. Low and C.P. Sebrechts.
Sharp and Children's MRI Center, San Diego, CA, USA.

14:45 **345.** Magnetization Transfer Ratios in Normal Pancreas and Pancreaticobiliary Cancer.
A.R. Gillams, S. Smart and W.R. Lees.
The Middlesex Hospital and University College London Medical School, London, UK.

New York University, New York, NY, USA.

Chonbuk National University Hospital, Chonbuk, Korea.
CLINICAL FOCUS SESSION
Gynecologic and Fetal MRI
Room C209
13:30 – 15:30

Chairs: Caroline Reinhold, Keynote Speaker
Reena C. Jha

13:30
Keynote.

Seirei Hamamatsu General Hospital and Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan and
GE Yokogawa Medical System, Hino, Tokyo, Japan.

13:57 349. Uterine Artery Embolization for Uterine Fibroids and Concomitant Adenomyosis: Assessment by
MRL.
Georgetown University Medical Center, Washington, DC, USA.

14:09 350. Interactive Imaging of the Pelvic Floor with MR Fluoroscopy.
Mayo Clinic, Rochester, MN, USA.

Imaging.
T. Pfeifer and T. Hager.
Frankenwaldklinik, Kronach, Germany.

14:33 352. Dynamic MR Imaging of the Female Genitalia Using AngioMark: Initial Experience Evaluating the
Female Sexual Response.
H. Nghiem.
University of Washington, Seattle, WA, USA; Pfizer, Inc., Groton, CT, USA; Epix Medical, Boston, MA, USA and
University of Michigan, Ann Arbor, MI, USA.

Seirei Hamamatsu General Hospital and Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan and
GE Yokogawa Medical System, Hino, Tokyo, Japan.

14:57 354. Relating In Utero Diffusion Measurements with Known Fetal Morphology.
University of Nottingham, Nottingham, UK.

Brigham and Women's Hospital, Boston, MA, USA.
Vessel Wall Mechanics and Morphology

Room A102
16:00 – 18:00

Chairs: Charles M. Anderson
Stuart Berr

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>356. Measurement of Local Pulsewave Velocity in a Single Heartbeat Using Intravascular MR.</td>
<td>B.D. Bolster Jr., J-M. Serfaty and E. Atalar.</td>
<td>Johns Hopkins University, Baltimore, MD, USA.</td>
</tr>
<tr>
<td>17:12</td>
<td>362. MR Microscopy of Atherosclerotic Lesions in Transgenic Mice at 2 Tesla.</td>
<td>L. Chaabane, E. Canet, F. Contard, D. Guerrier, P. Douek and A. Briguet.</td>
<td>UCB-CPE, Villeurbanne, France; Hôpital Cardiologique, Lyon, France and Lipha SA, Lyon, France.</td>
</tr>
<tr>
<td>17:36</td>
<td>364. Diagnosis of Lower Limb Deep Venous Thrombosis (DVT): Prospective Blinded Analysis of Magnetic Resonance Direct Thrombus Imaging.</td>
<td>D. Fraser, A. Moody, I. Davidson, A. Martel and P. Morgan.</td>
<td>University Hospital, Nottingham, UK.</td>
</tr>
</tbody>
</table>
Spectroscopic Localization and Imaging
Room A108
16:00 – 18:00

Chairs: Dieter Leibfritz
Kamil Ugurbil

16:00 366. Improving Clinical MRSI With Very Selective Saturation Pulses to Reduce Chemical Shift Errors and Conform PRESS Selection.
University of California, San Francisco, CA, USA and General Electric Medical Systems, Fremont, CA, USA.

16:12 367. In Vivo 1H NMR Spectroscopy of Human Brain at 7 Tesla.
University of Minnesota, Minneapolis, MN, USA.

University and ETH Zurich, Zurich, Switzerland.

16:36 369. Test-Retest Reliability of Short Multislice 1H-MRSI.
DVA Medical Center and University of California San Francisco, CA, USA.

16:48 370. Fast 1H Spectroscopic Imaging Combined with 2D Correlation Spectroscopy Uncoupled In Both Frequency Domains.
D. Mayer, W. Dreher and D. Leibfritz.
Universität Bremen, Bremen, Germany.

17:00 371. A New Method for Fast Spectroscopic Imaging with High Signal-to-Noise Ratio: Spectroscopic RARE.
W. Dreher and D. Leibfritz.
Universität Bremen, Bremen, Germany.

17:12 372. Improved Lipid Removal Using Dual K-Space Sampling for EPSI.
A. Ebel and A.A. Maudsley.
DVA Medical Center and University of California, San Francisco, CA, USA.

L.G. Hanson.
Hvidovre Hospital, Copenhagen, Denmark.

17:36 374. Volumetric Multi-Shot Echo Planar 1H Spectroscopic Imaging.
J.M. Tyszka and A.N. Mamela.
City of Hope National Medical Center, Duarte, CA, USA.

17:48 375. A New Method for Editing Lactate and Detecting Other 1H Metabolites Simultaneously.
J.C. Lin, L. DelaBarre and M. Garwood.
University of Minnesota, Minneapolis, MN, USA.
MR PHYSICS AND TECHNIQUES FOR CLINICIANS:
Room A201
16:00 – 18:00

Chairs: Frank R. Korosec
Joseph C. McGowan

Educational Objectives
Upon completion of this course, participants should be able to:

- Define and describe the fundamental principles of MR imaging, including spin magnetization, the Larmor relationship, relaxation phenomena, and the process of using the spin magnetization to produce an image;
- Explain imaging pulse sequences based upon spin and gradient echoes, including fast spin echo and echo planar techniques;
- Design MR imaging protocols for diagnostic applications considering image contrast, spatial resolution, acquisition time, signal-to-noise ratio, and artifacts;
- Describe the principles and capabilities of various advanced MR techniques including perfusion and diffusion, spectroscopy, interventional MRI, and cardiac MR imaging.

Materials to accompany today’s lectures can be found at http://jcmsgi.rad.upenn.edu/jmcgowan/ismr/ismrm.html.

16:00 Image Quality and Acquisition Speed.
Norbert J. Pelc.

16:40 Echo Planar Imaging.
Robert M. Weisskoff.

17:20 Perfusion and Diffusion Imaging.
David A. Roberts.
New Contrast Agents and Applications
Room A207
16:00 – 18:00

Chairs: Val M. Runge
 Charles S. Springer

16:00 376. Renal Reabsorption, a New Strategy in the Development of Vascular Contrast Agents.
 J.M. Colet, S. Laurent and R.N. Muller.
 University of Mons-Hainaut, Mons, Belgium.

16:12 377. Dendrimer-Based Cellular MR Contrast Agents: Development of a Molecular "Off-Switch" for a
 Macromolecular Contrast Agent.
 L.H. Bryant, Jr., J.W.M. Bulte, C.A. Combs, B.K. Lewis and J.A. Frank.
 National Institutes of Health, Bethesda, MD, USA.

16:24 378. WITHDRAWN.

16:36 379. Proton Chemical Exchange Dependent Saturation Transfer (CEST): Evaluation as a Mechanism for
 Non-Metal Based Exogenous MRI Contrast Agent.
 National Institutes of Health, Bethesda MD, USA.

 Thermometry.
 A. Bartholet, J.F. Goudemant, S. Laurent, O. Kahn, L. Vander Elst and R.N. Muller.
 University of Mons-Hainaut, Mons, Belgium and Institut Universitaire, Pessac, France.

17:00 381. Molecular Imaging of Thrombus with a New Targeted Magnetic Resonance Contrast Agent.
 NIBSC, Potters Bar, UK; Philips Medical Systems, Best, The Netherlands and Barnes Jewish Hospital at Washington
 University Medical Center, St. Louis, MO, USA.

17:12 382. Detection of Apoptosis by MRI Using SPIO-conjugated C2 Domain of Synaptotagmin I.
 M. Zhao, D.A. Beauregard, B.A. Davletov and K.M. Brindle.
 University of Cambridge and Medical Research Council, Cambridge, UK.

17:24 383. 3D MR Tracking of Magnetically Labeled Oligosphere Transplants: Initial In Vivo Experience in the
 LE (Shaker) Rat Brain.
 J.W.M. Bulte, S-C. Zhang, P. van Gelderen, B.K. Lewis, I.D. Duncan and J.A. Frank.
 National Institutes of Health, Bethesda, MD, USA and University of Wisconsin, Madison, WI, USA.

17:36 384. The Potential of Ultrasmall Iron Oxides for Specific Labeling of Microglia and Distinguished
 Delineation of Gliomas.
 G. Fleige, C. Diekmann, M. Kresse and C. Zimmer.
 University Medical Center Charité and Freie Universität, Berlin, Germany.

 Aachen University of Technology, Aachen, Germany and Schering, Berlin, Germany.
MRI and MRS of Brain Tumors
Room C106
16:00 – 18:00

Chairs: Jeffry R. Alger
Shoji Naruse

16:00 386. Assessment of Cerebral Gliomas by a New Dark Fluid Sequence HIRE (High Intensity REduction).
German Cancer Research Center (DKFZ), Heidelberg, Germany; Siemens Medical Systems, Erlangen, Germany and University of Heidelberg, Heidelberg, Germany.

16:12 387. Sodium MRI in Cancer at 1.5T.
C.D. Constantinides, F. Boada, D. Bolar, J. Gillen and M.G. Pomper.
Johns Hopkins University, Baltimore MD, USA and University of Pittsburgh, Pittsburgh, PA, USA.

University of Pittsburgh, Pittsburgh, PA, USA.

Paul Sabatier University, Toulouse, France.

16:48 390. The Effect of Gadolinium on Quantitative Short-Echo Time Single Voxel MRS of Treated and Untreated Brain Tumors.
A. Lin and B.D. Ross.
Huntington Medical Research Institutes, Pasadena, CA, USA.

17:00 391. Automated Analysis of 3D 1H-MRSI Data from Patients with Glioma.
T. McKnight, D. Vigneroņ, S. Noworolski and S. Nelson.
University of California, San Francisco, CA, USA.

17:12 392. Increased Choline Levels Coincide With Enhanced Proliferative Potential of Human Brain Tumors.
University of Frankfurt, Frankfurt, Germany.

P. Murphy, A. Dzik-Jurasz, I. Baustert, M. Leach and I. Rowland.
The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK.

17:36 394. Abnormal Diffusion and Perfusion MRI and Proton MRS in Peri-Tumoural Oedematous Brain.
University of Oxford and Radcliffe Infirmary, Oxford, UK.

17:48 395. The Use of 1H MRS, Diffusion and Perfusion MRI in the Evaluation of Brain Tumor Response to Therapy: Correlation between Choline Level and ADC, rCBV.
W. Huang, P. Roche, A. Tudorica, S. Madajewicz, D. Madoff, T. Button, H. Li, J. Manzione and C. Roque.
State University of New York, Stony Brook, NY, USA.
Motion and Artifacts
Room C205
16:00 – 18:00

Chairs: W. Thomas Dixon
Alice M. Wyrwicz

16:00 396. Young Investigator Awards Finalist: Postprocessing Technique to Correct for Background Gradients in Image-Based R₂* Measurements.
M.A. Fernández-Seara and F.W. Wehrli.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

16:20 397. B₀-Fluctuation-Induced Temporal Variation in EPI Image Series Due to the Disturbance of Steady-State Free Precession (SSFP).
X. Zhao, J. Bodurka, A. Jesmanowicz, J.S. Hyde and S-J. Li.
Medical College of Wisconsin, Milwaukee, WI, USA and University School of Medical Sciences, Bydgoszcz, Poland.

16:32 398. Oblique K-Space Scan for Motion Artifact Suppression.
Q-S. Xiang and S. Chavez.
University of British Columbia, Vancouver, BC, Canada.

16:44 399. A Two-Step Navigator-less Motion Correction Algorithm Using Radial Trajectories.
Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA.

16:56 400. Real-Time Motion Correction of Linear Expansion in MRI by Navigator-based Gradient Scaling.
D. Manke, P. Börnert, K. Nehrke, B. Aldefeld and O. Dössel.
Universität Karlsruhe, Karlsruhe, Germany and Philips Research, Hamburg, Germany.

17:08 401. Autocorrection of Motion in Shoulder MRI at 1 Second/Image.
Mayo Clinic, Rochester, MN, USA.

J.P. Mugler III.
University of Virginia School of Medicine, Charlottesville, VA, USA.

17:32 403. Phase Ordering with Automatic Window Selection (PAWS): A Novel Motion Resistant Technique for 3D Coronary Imaging.
Royal Brompton Hospital, London, UK.

17:44 404. Study of the Respiratory Motion of the Heart Using Multiple Navigator Pulses.
K. Nehrke and P. Börnert.
Philips Research Laboratories, Hamburg, Germany.
Interventional MRI Devices
Room C209
16:00 – 18:00

Chairs: Mark E. Ladd
Ronald D. Watkins

16:00 405. Remote Control of Catheter Tip Deflection: A Special Opportunity for Interventional MRI.
University of California, San Francisco, CA, USA.

16:12 406. Dual Functions of a Single Micro RF Coil Design: Interventional Device Tip Tracking and High Resolution Imaging Using MRI.
Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA.

Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA.

16:36 408. Catheter Visualization for Interventional MR: Modulating Currents of Field Inhomogeneity Catheters.
A. Glowinski, A. Bücker, G. Adam, P. Haage, J.J. van Vaals and R.W. Günther.
Aachen University of Technology, Aachen, Germany and Philips Medical Systems, Best, The Netherlands.

University Medical Center, Utrecht, The Netherlands.

Quebec City University Hospital and Laval University, Quebec City, Quebec, Canada.

Friedrich-Schiller-Universität, Jena, Germany and Forschungszentrum Karlsruhe, Karlsruhe, Germany.

General Electric Research & Development, Schenectady, NY, USA.

17:36 413. TmDOTA: A Promising Temperature Sensitive Probe for MR Thermometry.
Beth Israel Deaconess Medical Center, Brigham & Women's Hospital, the Children's Hospital, and Harvard Medical School, Boston, MA, USA.

17:48 414. The Effect of Absorbable Hemostatic Agents on 1/T₁ of Blood: An in vitro Relaxometry Study with Implications for Postoperative MRI.
New York Medical College, Valhalla, NY, USA and Relaxometry, Inc., Mahopac, NY, USA.
STUDY GROUP:
MR Engineering
Room A108
19:15 – 21:15

Business Meeting

- Welcome, James Tropp, Chair
- Introduction of New Officers
- Call for Nominations for 2001 Governing Committee Ballot
- New Business

Scientific Meeting

Current Density Modeling in RF Resonators by Integral Equations
Stuart Crozier
Queensland University, Brisbane, Australia

The Polynomial Bloch Equations
Patrick LeRoux
Palaiseau, France

Towards a Universal MR Application Programming Environment
Graeme C. McKinnon
GE Medical Systems, Milwaukee, WI, USA

Peripheral Nerve Stimulation in MR Imaging
Brian K. Rutt
Robarts Research Institute, London, ON, Canada
Wednesday PM

STUDY GROUP:
MR of Cancer
Room A207
19:15 – 21:15

Scientific Program

Chair: June S. Taylor
St. Jude Children’s Research Hospital, Memphis, TN, USA

What We Know about Lactate and pH in Tumors
Eric O. Aboagye
PET Oncology Group, Imperial College School of Medicine, Hammersmith Hospital, London UK.

Studying Lactate and pH Noninvasively with MR
Michael Garwood
University of Minnesota, Minneapolis, MN, USA

Comments and questions from the audience for 2 minutes each, with response from speakers.

Business Meeting

- Introduction and Installation of 2000 Steering Committee
- Call for Nominations for 2001 Steering Committee Ballot
- Negendank Fund Update
- Workshop Report
- New Business
STUDY GROUP:
Hyperpolarized Noble Gas MR
Room C205
19:15 – 21:15

Business Meeting

- Welcome
 Mitchell S. Albert, Chair
- Report on the Progress of the Study Group (membership, etc.)
 Hans-Ulrich Kauczor, Recorder
- Call for Nominations for 2001 Governing Committee Ballot
 Mitchell S. Albert, Chair
- New Business

Scientific Meeting

Moderator: *John Mugler, III, Program Director*

Getting Started with Hyperpolarized Gases
Speaker TBA

Scientific Focus: Mechanisms of Image Contrast
Speaker TBA

Clinical Focus: Airway Disease
Speaker TBA

Hot Topic: *In Vivo* Very Low-Field Hyperpolarized Gas Imaging
Speaker TBA

Round Table Discussion: Gas Breathing Protocols and Safety
Speaker TBA
STUDY GROUP:
Interventional MR
Room C209
19:15 – 21:15

Business Meeting

- Welcome, Jeffrey L. Duerk, Chair
- Introduction of New Officers:
 - Chairman: Jonathan S. Lewin
 - Vice-Chairman: Thomas Kahn
 - Secretary: TBA
- Call for nominations for 2001 Governing Committee ballot
- ACR Neuroradiology and MRI commission list of MRI guided procedures, both diagnostic and therapeutic – CPT codes
- Overview of 3rd International IMRI Symposium (Leipzig)
 - ISMRM Involvement
 - Dates
 - Program
- Mission Statement Proposal
- New Business

Scientific Meeting

- Current and Future Trends in IMRI Research: A Summary and Group Discussion of Work seen at the 8th ISMRM Conference.

The Officers of the ISMRM Interventional MR Study Group, and a limited number of other recruited experts in the field, will canvas the 8th Annual Meeting to assess current trends, new directions, and important new developments in the IMRI field. Borrowed material will be used as much as possible.
MORNING CATEGORICAL COURSE
Cardiac MR Imaging
Room C205
07:00 – 08:00

Chairs: Andre Duerinckx
Roderic I. Pettigrew
Cynthia B. Paschal

Educational Objectives
Upon completion of this course, participants should be able to:

- Describe basic areas of routine and promising clinical use of MR in assessing cardiovascular disease;
- Describe basic areas of MR use which are both routine and promising in assessing cardiovascular disease;
- Explain the MR methodology and techniques used to assess acquired and congenital heart disease;
- Apply MR protocols for the evaluation of cardiac morphology, function, viability and blood flow;
- Describe approaches for cardiac data analysis and presentation.

The final five minutes of each talk will be reserved for questions.

07:00 Techniques for Assessing Myocardial Function and Viability.
Joao A.C. Lima.

07:30 Coronary Artery MR.
Andre J. Duerinckx.

MORNING CATEGORICAL COURSE
fMRI in Neuro-Psychiatric Disease and Treatment:
fMRI of Psychiatric and Degenerative Disorders
Room A201
07:00 – 08:00

Chairs: Linda Chang
Peter Jezzard

Educational Objectives
Upon completion of this course, participants should be able to:

- Identify the special issues facing clinicians and researchers who wish to apply functional MRI to patient populations;
- Describe fMRI studies that have been successfully accomplished in neurological and psychiatric disorders;
- List a number of issues that remain to be resolved before widespread use of fMRI in patient populations is feasible;
- Describe the role and potential of animal models in increasing the understanding of fMRI studies in disease;
- Explain the principles and theory of pharmacological (ph) MRI;
- Appraise the potential for phMRI in humans and predict the impact on disease treatment.

07:00 Addiction.
Elliot A. Stein.

07:15 Schizophrenia.
Joseph H. Callicott.

07:30 AIDS Dementia.
Thomas Ernst.

07:50 Discussion.
MORNING CATEGORICAL COURSE
Abdominal Imaging
Room A207
07:00 – 08:00

Chair: Donald G. Mitchell

Educational Objectives
Upon completion of this course, participants should be able to:

• Implement modern MR applications for diagnosing focal and diffuse liver disease;
• Incorporate into their practices recent developments for MR imaging of the pancreas and biliary tract, including MR cholangiopancreatography;
• Use MRI to diagnose extrahepatic disease, such as that of the bowel and peritoneum, as well as vascular disease using state of the art MR angiographic techniques.

07:00 Bowel and Peritoneum.
Russell N. Low.

07:50 Questions.

MORNING CATEGORICAL COURSE
The Nano-Meter Film: How MRS and MRI Can Probe Tissue Microstructure
Room C106
07:00 – 08:00

Chairs: Chris Boesch
R. Mark Henkelman

Educational Objectives
Upon completion of this course, participants should be able to:

• Describe methods in MRS and MRI that allow studies of tissue ultra-structure
• Identify areas in which MR can contribute to the knowledge of tissue organization
• Evaluate potential applications and limitations of MR methods to study compartmentation, order, and transport processes in vivo
• Generate an overview of advanced methods in MRS and MRI that give information on the nanometer scale
• Explain the influence of tissue structure upon MR parameters.

The final five minutes of each talk will be set aside for questions.

07:00 Dipolar Coupling and Ordering Effects in Muscles.
Chris Boesch.

07:30 In Vivo Tissue Compartmentation and Membrane Transport.
Douglas L. Rothman.

08:00 Adjournment.
PLENARY LECTURES
Acute Stroke
Ballroom
08:15 – 09:30

Chairs: Jay S. Tsuruda
 Chrit T. Moonen

Educational Objectives
Upon completion of this session participants should be able to:

- Describe the biochemical and pathophysiological events of stroke;
- Explain the principles of acute stroke therapies;
- Discuss the clinical role of imaging in therapeutic decisions in acute stroke patients;
- Describe the necessary elements of acute stroke MR protocols;
- Compare the potential and limitations of MR diffusion, perfusion and angiography in acute stroke management.

08:15 **415. Acute Stroke: Strategies for Optimal Therapy.**
 Burkhard Ostertun.
 University of Bonn, Bonn, Germany.

08:40 **416. The Role of MR in the Evaluation of Pathophysiology and Therapy of Acute Stroke Models.**
 Mathias Hoehn.
 Max-Planck-Institute for Neurological Research, Cologne, Germany.

09:05 **417. The Clinical Role of MR in the Treatment of Acute Stroke.**
 Steven Warach.
 National Institutes of Health, Bethesda, MD, USA.
Spectroscopic Quantitation
Room A102
10:30 – 12:30

Chairs: Jan A. den Hollander
Roland Kreis

10:30 418. 3D-Localized 13C NMR Measurements of Rat Brain Glucose Concentrations and Transport Kinetics Using a Reversible Michaelis-Menton Model.
R. Gruetter and I-Y. Choi.
University of Minnesota, Minneapolis, MN, USA.

Brookhaven National Laboratory, Upton, NY, USA; Albert Einstein College of Medicine, Bronx, NY and Yale University School of Medicine, New Haven, CT, USA.

10:54 420. Quantitative Evaluation of Regional Heterogeneity of Phosphorus Metabolites in Human Brain.
Brookhaven National Laboratory, Upton, NY, USA; University of Alabama, Birmingham, AL, USA; University of Minnesota, Minneapolis, MN, USA and Yale University, New Haven, CT, USA.

Johns Hopkins University, Baltimore, MD, USA.

11:18 422. Measurement of the Rate of Pyruvate Carboxylase in Human Brain by 13C NMR.
Yale University School of Medicine, New Haven, CT, USA and Nathan Kline Institute, Orangeburg, NY, USA.

11:30 423. Modeling Recovery of pH$_i$ in Muscle in vivo to Provide a Novel Index of Proton Handling in Mitochondrial Myopathy.
J.T. Chen and D.L. Arnold.
Montreal Neurological Institute, Montreal, Quebec, Canada.

11:42 424. Associations between Central and Peripheral Measures of Phospholipid Breakdown Revealed by Cerebral 31-Phosphorus MRS and Fatty Acid Composition of Erythrocyte Membranes.
University of Oxford, Oxford, UK; Scotia Research Institute, Nova Scotia and Imperial College School of Medicine, Hammersmith Hospital, London, UK.

DVA Medical Center and University of California, San Francisco, CA, USA.

R. Kreis, L. Hofmann and C. Boesch.
University of Bern, Bern, Switzerland.

H. Yu and P. Narayana.
University of Texas-Houston Medical School, Houston, TX, USA.
Quantitation - Relaxation Measurements
Room A108
10:30 – 12:30

Chairs: Kathleen M. Donahue
Peter Jezzard

10:30 428. T₁ Maps From Shifted Spin Echoes and Stimulated Echoes.
S. Ropele, R. Stollberger, F. Ebner, H.-P. Hartung and F. Fazekas.
Karl-Franzens University, Graz, Austria.

Technical University of Denmark and Hvidovre Hospital, Copenhagen, Denmark.

10:54 430. Fast T₁ Mapping Using Multislice EPI.
S. Clare and P. Jezzard.
University of Oxford and John Radcliffe Hospital, Oxford, UK.

11:06 431. Quantitative T₂ Contrast with Gradient Echoes.
D.A. Yablonskiy.
Washington University, St. Louis, MO, USA.

D. Tyler, L. Marciani and P. Gowland.
University of Nottingham, Nottingham, UK.

11:30 433. Reproducibility and Accuracy of Frequency Domain-Derived Bone Marrow R₂*.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

O. Beuf, D.C. Newitt, L. Mosekilde and S. Majumdar.
University of California, San Francisco, CA, USA and University of Aarhus, Aarhus, Denmark.

11:54 435. Two-Dimensional T₁ and T₂ Relaxometry of In Vivo Skeletal Muscle at 3 Tesla.

12:06 436. Correction for B₁ and B₀ Variations in Quantitative T₂ Measurements Using MRI.
J.G. Sled and G. B. Pike.
Montréal Neurological Institute, Montréal, Québec, Canada.

S. Kennedy, Z. Chen, P. Connelly and J. Zhong.
University of Rochester, Rochester, NY, USA.
CLINICAL CATEGORICAL:
Dynamic Contrast Imaging of Tumors
Room A201
10:30 – 12:30

Chair: Michael V. Knopp
 Michal Neeman

Educational Objectives
Upon completion of this course, participants should be able to:

• Explain the basic pathophysiological principles underlying the contrast enhancement in tumors with emphasis on dynamic Gd-chelate contrast-enhanced methodologies;
• Perform dynamic contrast imaging of tumors in the brain, thorax, breast, liver, pelvis and musculoskeletal system;
• Analyze and interpret dynamic contrast enhanced studies;
• Select and recommend appropriate dynamic MR techniques for different situations;
• Describe the range of diagnostic and therapeutic questions that can be evaluated by dynamic contrast enhanced MRI

10:30 Introduction.
 Bruce A. Berkowitz.

11:00 Brain Tumors.
 John N. Gomori.

11:15 Breast Tumors.
 Michael V. Knopp.

11:30 Liver Tumors.
 Mitchell Schnall.

11:45 Musculoskeletal Tumors.
 June Taylor.

12:00 Panel Discussion.
 Hakan Ahlstrom, Hadassah Degani, Jeffrey Evelhoch, Michael V. Knopp, Nina Mayr, Val Runge, June Taylor, William T. C. Yuh.
fMRI: Quantitative Measurements
Room A207
10:30 – 12:30

Chairs: Richard Hoge
Richard B. Buxton

10:30 438. Study of Oxygen Utilization Changes in Human Visual Cortex During Hemifield Stimulation Using 1H – $^{[13]}$C MRS and fMRI.
University of Minnesota School of Medicine, Minneapolis, MN, USA.

Stanford University, Stanford, CA, USA.

T.Q. Duong and S-G. Kim.
University of Minnesota School of Medicine, Minneapolis, MN, USA.

11:06 441. WITHDRAWN.

H. An and W. Lin.
Washington University, St. Louis, MO, USA and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

11:30 443. Quantification of Oxygen Extraction in Venous T_2 BOLD Experiments Using a CPMG Sequence.
Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA and University of Kuopio, Kuopio, Finland.

11:42 444. Localized Energetic Changes with Brain Activation from Anesthesia I: Absolute CBR Changes at 7 Tesla.
Yale University, New Haven, CT, USA.

D.W Morton, K.R. Maravilla, J.R. Meno and H.R. Winn.
University of Washington, Seattle, WA, USA.

H. Bruhn, G. Stoppe and J. Frahm.
Biomedizinische NMR Forschungs GmbH and Psychiatrische Uni-Klinik, Göttingen, Germany.

Washington University, St. Louis, MO, USA.
MR Imaging of Brain – Vascular
Room C106
10:30 – 12:30

Chairs: E. Mark Haacke
Peter B. Barker

10:30 448. High-Resolution UHFMRI of the Human Cerebral Vasculature Patterns.
The Ohio State University, Columbus, OH, USA.

10:42 449. Cortical Cerebral Hemodynamics in Human Acute Ischemic Stroke: A Study with Combined
Diffusion Weighted and Perfusion Weighted MRI.
Y. Liu, J.O Karonen, R. Vanninen, L. Østergaard, J. Nuutinen, J. Perkiö, M. Könönen, E. Vanninen, S. Soimakallio,
J. Kuikka and H.J. Aronen.
Kuopio University, Kuopio, Finland and Aarhus University Hospitals, Aarhus, Denmark.

10:54 450. Dynamic MR Bolus Tracking in Hyperacute Stroke: Comparison with Diffusion Weighted MR
Imaging.
J. Perkiö, L. Soinne, L. Østergaard, T. Tatlisumak, A. Kangasmäki, J. Helenius, S. Martinkauppi, O. Salonen,
S. Savolainen, M. Kaste and H.J. Aronen.
Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; Aarhus University Hospital, Aarhus,
Denmark and Kuopio University Hospital, Kuopio, Finland.

11:06 451. Correlation of ADC Decreases and Perfusion MRI Parameters In the Ischemic Core of Acute Stroke
Patients.
Friedrich-Schiller University, Jena, Germany.

11:18 452. Viability Thresholds of the Penumbra of Acute Human Ischemic Stroke Defined from rCBF and
rCBV.
L. Røhl, L. Østergaard, C.Z. Simonsen, P. Vestergaard-Poulsen, G. Andersen, D. Le Bihan and C. Gyldensted.
Aarhus University Hospital, Aarhus, Denmark and SHFJ, Orsay, France.

11:30 453. Immediate Changes in Cerebral Perfusion Due to Carotid Stenting.
University of Sheffield, Northern General Hospital and Royal Hallamshire Hospital, Sheffield, UK.

11:42 454. The PWI-DWI Mismatch in Patients With and Without Carotid Artery Stenosis.
University of Duesseldorf, Duesseldorf, Germany and Stanford University, Stanford, CA, USA.

11:54 455. Comparison of the Time-Course of CBF and BOLD T2 During Post-Ischaemic Hypoperfusion
Measured Using Double Echo FAIR (DEFAIR).
University College London, London, UK.

12:06 456. MR Signatures of Cerebral Infarction vs. Reversibility in Acute Stroke in Patients Treated with
Thrombolytic Therapy.
UCLA Medical Center and UCLA Stroke Center, Los Angeles, CA, USA.

M.A. Rocca, B. Colombo and M. Filippi.
H San Raffaele, University of Milan, Milan, Italy.
MR Angiography: Function and New Techniques
Room C205
10:30 – 12:30

Chairs: Thomas M. Grist
Arno Buecker

10:30 458. Design and Construction of a Robust Flow Phantom for the ISMRM Flow and Motion Group Multi-Centre Trial.
King's College and Imperial College, London, UK and John P. Robarts Research Institute, London, Ontario, Canada.

10:42 459. Evaluation of Vascular Function Using Phase Contrast Based MRI; Reproducibility and Repetability.
Aarhus University Hospital, Aarhus, Denmark.

10:54 460. Quantification of Aortic and Mitral Regurgitation Using Heart Motion Adapted Cine Phase Contrast Flow Measurements.
University and ETH and University Hospital, Zurich, Switzerland and Aarhus University Hospital, Aarhus, Denmark.

11:06 461. MR Clearance Measurements Predict Hemodynamically Significant Renal Artery Stenosis Following Angiotension Converting Enzyme (ACE) Inhibition.
University of Wisconsin, Madison, WI, USA.

11:18 462. Rose Model in MRI: Noise Limitation on Spatial Resolution and Implications for Contrast Enhanced MR Angiography.
R. Watts, Y. Wang, P.A. Winchester, N. Khilnani and L. Yu.
Weill Medical College of Cornell University, New York, NY, USA.

S.B. Fain, R.F. Busse, S.J. Riederer and J. Huston III.
Mayo Clinic, Rochester, MN, USA.

University of Aachen, Aachen, Germany and Philips Research Laboratories, Hamburg, Germany.

Washington University, St. Louis, MO, USA.

12:06 466. Intra-Arterial Contrast Enhanced MRA (IA-CEMRA).
Royal Adelaide Hospital, Adelaide, Australia.

12:18 467. Steady State and First Pass Blood Pool Agent Contrast Enhanced MRA.
University Medical Center, Utrecht, the Netherlands.
Analysis and Interpretation of Diffusion MRS and MRI
Room C209
10:30 – 12:30

Chairs: Michael E. Moseley
Christopher H. Sotak

10:30 **468.** Measurement of Cardiomyocyte Diameter in the Isolated Rat Heart Using Diffusion-Weighted 1H-MRS: Changes with Ischaemia.
C. Liess, G.K. Radda and K. Clarke.
University of Oxford, Oxford, UK.

10:42 **469.** Analysis of Susceptibility Effect of Microvasculature on MR Diffusion Measurements.
V.G. Kiselev.
Research Center Jülich, Jülich, Germany and Institute of Physics, Minsk, Byelorussia.

10:54 **470.** q-Space Diffusion MRI of Demyelination in Stroke Prone Spontaneously Hypertensive Rats.
Y. Assaf, A. Mayk and Y. Cohen.
Tel-Aviv University and TEVA Pharmaceutical Industries, Tel Aviv, Israel.

11:06 **471.** Two-Component Diffusion Tensor MRI of the Isolated Perfused Heart.
D.L. Buckley, E.W. Hsu, J.D. Bui, S.J. Blackband and J.R. Forder.
University of Florida, Gainesville, FL, USA; Duke University, Durham, NC, USA and University of Alabama, Birmingham, AL, USA.

11:18 **472.** Is a Multiexponential Decay of Diffusion Weighted Water Signal an Indicator for Multicompartimentalized Tissue?
C. Meier, D. Mayer, W. Dreher and D. Leibfritz.
Universität Bremen, Bremen, Germany.

11:30 **473.** Quantification of Fiber Orientation with Diffusion Tensor MR Imaging and 3D Resolved Two-Photon Microscopy.
Massachusetts Institute of Technology, Cambridge, MA, USA and Massachusetts General Hospital and Beth Israel Deaconess Medical Center, Boston, MA, USA.

11:42 **474.** Investigation of Techniques to Quantify In Vivo Lesion Volume Based on Comparison of ADC$_{av}$ Maps with Histology in Focal Cerebral Ischemia Studies of Rats.
Worcester Polytechnic Institute, UMass Memorial Health Care and University of Massachusetts Medical School, Worcester, MA, USA.

11:54 **475.** Diffusion-Weighted Spectroscopy of 13C-Labelled Lactate in Rat Glioma In Vivo.
University of Minnesota Medical School, Minneapolis, MN, USA.

12:06 **476.** Rapid Three-Dimensional Diffusion MRI for Stroke Studies in Mice.
The Johns Hopkins University, Baltimore, MD, USA.

University of Graz, Graz, Austria.
GOLD CORPORATE MEMBER LUNCHTIME SYMPOSIUM
Siemens Medical Systems
Advanced Hardware Drives Advanced Applications – Cardiovascular and Neurological Imaging
Room C112
12:30 – 13:30
POSTER WALKING TOUR
Rapid Imaging
Thursday, 6 April, 2000
Hall C
13:30 – 15:30

Chairs: Gary H. Glover
 Graeme C. McKinnon

Please see page 120 for details.

POSTER WALKING TOUR
MR Angiography: Technique Optimization
Thursday, 6 April, 2000
Hall C
13:30 – 15:30

Chairs: Michael V. Knopp
 Michael Bock

Please see page 121 for details.
CLINICAL FOCUS SESSION
Diffusion MRI
Room A207
13:30 – 15:30

Chairs: A. Gregory Sorensen, Keynote Speaker
Denis Le Bihan

13:30 Keynote.

University of Graz, Graz, Austria.

The University of California, San Francisco, CA, USA.

14:09 480. Magnetic Resonance Tractography for Pre-Surgical Planning and Post-Surgical Evaluation.
M.D. Anderson Cancer Center, Houston, TX, USA and General Electric Medical Systems, Milwaukee, WI, USA.

14:21 481. Angular Differentiation of Thalamic Nuclei by Quantitative DTI.
Massachusetts General Hospital, Boston, MA, USA and Danish Research Center for Magnetic Resonance, Hvidovre, Denmark.

14:33 482. Axon Tractography with Tensorlines.
University of Utah, Salt Lake City, UT, USA.

14:45 483. Pathological Damage in MS Assessed by Diffusion-Weighted and Magnetization Transfmer MRI.
H San Raffaele, University of Milan, Milan, Italy and University of Leicester and Leicester Royal Infirmary, Leicester, UK.

14:57 484. Biexponential Apparent Diffusion Coefficient Parametrization in Adult vs Newborn Brain.
R.V. Mulkern, S. Vajapeyam, R.L. Robertson, H.P. Zengiongou, M. Rivkin and S.E. Maier.
Children's Hospital, and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

15:09 485. Cytokine Induced Inflammation Causes Alterations in Brain Water Diffusion and Cerebral Perfusion.
John Radcliffe Hospital, Headington, Oxford, UK; University of Oxford, Oxford, UK and University of Southampton, Southamptom, UK.
Thursday PM

CLINICAL FOCUS SESSION
MR Imaging of Breast Cancer
Room C205
13:30 – 15:30

Chairs: Steven E. Harms, Keynote Speaker
 Bruce L. Daniel

13:30
Keynote.

13:45 486. MRI Surveillance of Women at High Risk for Hereditary Breast Cancer: Preliminary Results.
 Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada.

 University Hospital, Trondheim, Norway.

 University Hospital, Tuebingen, Germany.

14:21 489. MRI-Directed Laser Photocoagulation of Breast Cancer.
 University of Arkansas for Medical Sciences, Little Rock, AR, USA.

 University Hospital, Trondheim, Norway.

14:45 491. Inter-Observer Variability in Classification of Time-Signal Intensity Curves from Contrast-Enhanced Breast MRI.
 Stanford University, Stanford CA, USA.

14:57 492. Influence of Menstrual Phase on Apparent Diffusion Coefficients Measured in the Breast.
 University of California, San Francisco, CA, USA and GE Medical Systems, Waukesha, WI, USA.

 Philips Research and Uni-Krankenhaus Eppendorf, Hamburg, Germany.
fMRI: Spatial-Temporal Characteristics
Room A102
16:00 – 18:00

Chairs: Peter A. Bandettini
Seong-Gi Kim

16:00 494. Mapping Iso-Orientation Columns with Ultra-High Resolution fMRI.
D-S. Kim, T.Q. Duong and S-G. Kim.
University of Minnesota School of Medicine, Minneapolis, MN, USA.

16:12 495. Early Negativity Enhanced BOLD fMRI Using Short Inter-Stimulus Intervals.
B.M. Ances and J.A. Detre.
University of Pennsylvania, Philadelphia, PA, USA.

16:24 496. Spatially Coincident Patterns of Cerebral Blood Flow and Metabolism Response During Neuronal Stimulation.
Massachusetts General Hospital, Charlestown MA, USA and Montreal Neurological Institute, Montreal Quebec, Canada.

16:36 497. Arterial Spin Labeling Localizes the fMRI Signal to Brain Tissues Better than BOLD.
University of California, San Diego, CA, USA and Medical College of Wisconsin, Milwaukee, WI, USA.

16:48 498. Negative Visually Induced BOLD Response During Human Adult Slow-Wave Sleep.
Hvidovre Hospital, Copenhagen, Denmark; John F. Kennedy Institute, Glostrup, Denmark and Rigshospitalet, Copenhagen, Denmark.

17:00 499. Spatiotemporal fMRI during Motor and Picture-Naming Tasks.
University of Southern California, Los Angeles, CA, USA.

17:12 500. Characterizing the Dynamic Perfusion Response to Stimuli of Short Duration.
University of California, San Diego, CA, USA and Stanford University, Stanford, CA, USA.

University of Minnesota, Minneapolis, MN, USA and Bell Laboratories, Murray Hill, NJ, USA.

17:36 502. fMRI Activation Secondary to Finger Tapping has Shorter Duration in Subcortical Regions Than in Sensorimotor Cortex.
C.H. Moritz, M.E. Meyerand, D. Cordes and V.M. Haughton.
University of Wisconsin, Madison, WI, USA.

Japan Science and Technology Corporation (JST), Akita, Japan; Kobe City College of Technology, Kobe, Japan and Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
Thursday PM

Contrast Mechanisms
Room A108
16:00 – 18:00

Chairs: Joseph C. McGowan
 Dmitriy A. Yablonskiy

16:00 **504.** Anatomic and Functional MRI with Intermolecular Double-Quantum Coherences at 7 Tesla.
 National Research Council, Winnipeg, MB, Canada; University of Minnesota, Minneapolis, MN, USA and Princeton
 University, Princeton NJ, USA.

16:12 **505.** Intermolecular Double-Quantum Coherence Imaging of Human Brain at 1.5T.
 J. Zhong, Z. Chen and E. Kwok.
 University of Rochester, Rochester, NY, USA.

16:24 **506.** Mitochondrial Structural Integrity Contributes Significantly to its Magnetization Transfer Effect.
 National Institutes of Health, Bethesda, MD, USA.

16:36 **507.** Depth Dependent Proton Magnetization Transfer in Articular Cartilage.
 University of Pennsylvania, Philadelphia, PA, USA.

16:48 **508.** Quantitative Imaging of Magnetization Transfer Parameters in vivo Using MRI.
 J.G. Sled and G. B. Pike.
 Montréal Neurological Institute, Montréal, Québec, Canada.

17:00 **509.** Imaging Ultra-Short T_2 Species in the Brain.
 Stanford University, Stanford, CA, USA.

17:12 **510.** Imaging Method Sensitive to Microvessel Density.
 J.H. Jensen and R. Chandra.
 New York University School of Medicine, New York, NY, USA.

17:24 **511.** Effects of Oxygenation Level in Contrast-Enhanced Magnetic Resonance Angiography Using
 NC100150 Injection.
 L.O. Johansson, A. Bjoernerud, K. Briley-Sebø and K.E. Kellar.
 Nycomed Imaging A/S, Oslo, Norway and Uppsala University Hospital, Uppsala, Sweden.

17:36 **512.** Microscopic Susceptibility Variation and $T_1\rho$.
 A.C. Nugent and G.A. Johnson.
 Duke University Medical Center, Durham, NC, USA.

17:48 **513.** Effects of pH and Ionic Environment on the On-Resonance $T_1\rho$ in Native and Cross-Linked Protein
 Solution as Determined with Spin-Lock Methods.
 University of Kuopio, Kuopio, Finland.
MR PHYSICS AND TECHNIQUES FOR CLINICIANS:
Room A201
16:00 – 18:00

Chair: Frank R. Korosec

Educational Objectives
At the conclusion of this course, participants should be able to:

- Define and describe the fundamental principles of MR imaging, including spin magnetization, the Larmor relationship, relaxation phenomena, and the process of using the spin magnetization to produce an image;
- Explain imaging pulse sequences based upon spin and gradient echoes, including fast spin echo and echo planar techniques;
- Design MR imaging protocols for diagnostic applications considering image contrast, spatial resolution, acquisition time, signal-to-noise ratio, and artifacts;
- Describe the principles and capabilities of various advanced MR techniques including perfusion and diffusion, spectroscopy, interventional MRI, and cardiac MR imaging.

Materials to accompany today's lectures can be found at http://jcmsgi.rad.upenn.edu/jmcgowan/ismr/ismrm.html.

16:00 Cardiac MRI.
 Lawrence Dougherty.

16:40 Interventional MRI.
 Mark E. Ladd.

17:20 Introduction to MR Spectroscopy.
 Robert E. Lenkinski.
MR Spectroscopy of Brain
Room A207
16:00 – 18:00

Chairs: James W. Prichard
Rolf Gruetter

16:00 514. Volumetric Magnetization Transfer Imaging Correlates with Proton Spectroscopy in Neuropsychiatric Systemic Lupus Erythematosus.
Leiden University Medical Center, Leiden, The Netherlands.

16:12 515. Early Proton MRS in Normal Appearing Frontal White Matter Correlates with Injury Severity and Outcome in Patients Following Traumatic Brain Injury.
University of Oxford and Radcliffe Infirmary, Oxford, UK.

University of New Mexico, Albuquerque, NM, USA.

16:36 517. 2D MR Spectroscopic Characterization of NAA, Glutamate and Glutathione in Human Brain In Vivo.
University of California, Los Angeles, CA, USA.

John P. Robarts Research Institute and University of Western Ontario, London, Ontario, Canada.

17:00 519. Human Brain β-Hydroxybutyrate and Lactate Increase in Fasting Induced Ketosis.
Brookhaven National Laboratory, Upton, NY, USA and Yale University School of Medicine, New Haven, CT, USA.

17:12 520. Lithium Increases N-Acetyl-Aspartate (NAA) in the Human Brain: In Vivo Evidence in Support of Lithium-Induced CNS Bel-2 Increases?
Wayne State University School of Medicine, Detroit, MI, USA.

17:24 521. Cortical GABA Differs Between Unipolar and Bipolar Depression.
Yale University School of Medicine, New Haven, CT, USA.

17:36 522. The Basal Ganglia, Low-Field, 1H MRS Purine Resonance (7.5-8.5 PPM) is Decreased in Major Depression, Correlates with β-NTP by 31P MRS, and Predicts Treatment Response.
P.F. Renshaw, A.M. Parow, Y. Ke, C.M. Moore, B.deB. Frederick and J.A. Hennen.
McLean Hospital, Belmont, MA, USA.

17:48 523. Reduced Brain GABA Levels in Cocaine Abusers.
H.P. Hetherington, J.W. Pan, F. Telang, N. Pappas and N.D. Volkow.
Brookhaven National Laboratory, Upton, NY, USA.
Perfusion: Contrast Agent Based Methods

Room C106

16:00 – 18:00

Chairs: Bruce R. Rosen
Leon Axel

16:00
524. **A New Approach for the Estimation of MTT in Bolus Passage Perfusion Techniques.**
University of Manchester, Manchester, UK.

16:12
525. **Quantitative Perfusion Imaging: Methods and Results.**
University Hospital, Utrecht, The Netherlands.

16:24
526. **3D MR Pulmonary Perfusion and Angiography with a New Intravascular Contrast Agent B22956/1 in Detection of Pulmonary Flow and Perfusion Defects.**
Northwestern University, Chicago, IL, USA; Bracco, Milan, Italy and Siemens Medical Systems, Chicago, IL, USA.

16:36
527. **Determination of Cerebral Blood Volume and Mean Transit Time by Dynamic Contrast Enhanced MR Imaging in Patients with Acute Stroke: A Comparison of Four Post Processing Methods.**
Kuopio University Hospital, Kuopio, Finland; Helsinki University Central Hospital, Helsinki, Finland; University of Helsinki, Helsinki, Finland and Aarhus University Hospital, Aarhus, Denmark.

16:48
528. **Quantification of the Effect of Water Exchange in Myocardial Perfusion Measurement Using Contrast Enhanced MRI.**
Hvidovre University Hospital, Hvidovre, Denmark.

17:00
Lawson Research Institute, St. Joseph's Health Centre and University of Western Ontario, London, Ontario, Canada.

17:12
530. **Evaluation of Myocardial Perfusion and Coronary Imaging Using Gadomer-17 in a Porcine Model of Single Vessel Disease.**
Johns Hopkins University, Baltimore, MD, USA.

17:24
531. **Quantification of Myocardial Perfusion and Perfusion Reserve with Magnetic Resonance First-Pass Measurements on Patients with Known Coronary Artery Disease.**
Johannes Gutenberg University, Mainz, Germany.

17:36
532. **Myocardial Blood Flow in Normals with MRI and PET: Comparison and Assessment of Reproducibility.**
Technische Universität, München, Germany.

17:48
533. **Intra- and Interobserver Agreement of Quantitative Magnetic Resonance First-Pass Perfusion Imaging.**
University of Minnesota Medical School and VA Medical Center, Minneapolis, MN, USA.
Image Processing
Room C205
16:00 – 18:00

Chairs: Ron Kikinis
Harvey E. Cline

16:00 534. Automatic Aorta Tracking for Blood Flow Analysis in MR PCA Image Sequences.
A.J. Lacey, N.A. Watson, N.A. Thacker and A. Jackson.
University of Manchester, Manchester, UK.

16:12 535. Image Segmentation Based Upon the Maximum Intensity Projection Z-Buffer.
University of Utah, Salt Lake City, UT, USA.

Y. Huang, C.A. Webster and G.A. Wright.
University of Toronto, Toronto, ON, Canada.

16:36 537. Unsupervised Computation of Left Ventricular Strain from Tagged Cardiac MR Images.
Auburn University, Auburn, AL, USA.

16:48 538. Fast Maximum Intensity Projection Algorithm Using Shear Warp Factorization and Reduced Resampling.
L. Fang, B. Qiu, Y. Qian, X. Ma and Y. Wang.
PLA General Hospital, Beijing, China; Hefei University of Technology, China; GE Medical Systems, Hong Kong and Cornell University, New York, NY, USA.

17:00 539. Magnetic Resonance Elastography Revisited: Reinterpreting Phase-Difference Data as the Output of a Linear Filter.
Mayo Clinic, Rochester, MN, USA.

Mayo Clinic, Rochester, MN, USA.

17:24 541. 2D and 3D Visualization of Human Brain Diffusion Tensor Data Combined with fMRI and High-Resolution Anatomical Data.
C. Karmonik, X.J. Zhou and E.F. Jackson.
University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.

17:36 542. An Integrated Visualization System for Surgical Planning and Guidance.
MIT AI Laboratory and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Yale University School of Medicine, New Haven, CT, USA.
MR Imaging of the Head and Neck
Room C209
16:00 – 18:00

Chairs: Jonathan S. Lewin
Robert W. Dalley

16:00 **544. Dynamic Contrast Uptake in Cervical Lymph Nodes: Correlation with Biopsy.**
The University of California, San Francisco, CA, USA.

16:12 **545. Dynamic MRI of Head and Neck Carcinomas to Assess Microcirculation and Changes During Therapy.**
German Cancer Research Center and University Hospitals, Heidelberg, Germany and The Ohio State University, Columbus, OH, USA.

16:24 **546. Combined Analysis of Morphologic and Dynamic MRI Criteria in Differentiation Between Malignant and Benign Thyroid Tumors.**
J. Mihailovic.
Institute of Oncology, Sremska Kamenica, Yugoslavia.

16:36 **547. Prospective Comparison of Magnetic Resonance Sialography and Digital Subtraction Sialography.**
Philips University, University Hospital, Marburg, Germany.

16:48 **548. High-Resolution CSF-Suppressed Diffusion Measurement in the Optic Nerve In Vivo.**
University College, London, UK.

17:00 **549. Virtual Endoscopy of the Labyrinth Using a 3D-FastASE Sequence.**
Nagoya University School of Medicine, Nagoya, Japan and Toshiba Medical Systems, Tokyo, Japan.

17:12 **550. MR Imaging of the Inner Ear with a T2-Weighted Axial Three-Dimensional Fast Spin-Echo Technique and Post-Processing of the Data.**
University of Technology (RWTH) Aachen, Germany.

17:24 **551. Correlating MR Spectral Features with Histopathology in Squamous Cell Carcinoma of the Head and Neck Region.**
National Research Council of Canada, Manitoba Cancer Research and Treatment Foundation and St. Boniface General Hospital, Winnipeg, Manitoba, Canada.

17:36 **552. Evaluation of Head and Neck Tumor Response to Therapy Using In Vivo 1H MR Spectroscopy: Correlation with Pathology.**
W. Huang, P. Roche, M. Shindo, D. Madoff, C. Geronimo and T. Button.
State University of New York, Stony Brook, NY, USA.

17:48 **553. Three-Dimensional Tracking of Tongue Motion Using Tagged MRI.**
Johns Hopkins University and University of Maryland School of Medicine, Baltimore, MD, USA.
MORNING CATEGORICAL COURSE
Cardiac MR Imaging
Room C205
07:00 – 08:00

Chairs: Andre Duerinckx
Roderic I. Pettigrew
Cynthia B. Paschal

Educational Objectives
Upon completion of this course, participants should be able to:
• Describe basic areas of routine and promising clinical use of MR in assessing cardiovascular disease;
• Describe basic areas of MR use which are both routine and promising in assessing cardiovascular disease;
• Explain the MR methodology and techniques used to assess acquired and congenital heart disease;
• Apply MR protocols for the evaluation of cardiac morphology, function, viability and blood flow;
• Describe approaches for cardiac data analysis and presentation.

The final five minutes of each talk will be reserved for questions.

07:00 Contrast-Enhanced Cardiac MRI.
Christine Lorenz.

07:30 Presentation and Quantitative Analysis.
Leon Axel.

MORNING CATEGORICAL COURSE
fMRI in Neuro-Psychiatric Disease and Treatment:
Models for fMRI and phMRI in Disease Treatment
Room A201
07:00 – 08:00

Chairs: Linda Chang
Peter Jezzard

Educational Objectives
Upon completion of this course, participants should be able to:
• Identify the special issues facing clinicians and researchers who wish to apply functional MRI to patient populations;
• Describe fMRI studies that have been successfully accomplished in neurological and psychiatric disorders;
• List a number of issues that remain to be resolved before widespread use of fMRI in patient populations is feasible;
• Describe the role and potential of animal models in increasing the understanding of fMRI studies in disease;
• Explain the principles and theory of pharmacological (ph) MRI;
• Appraise the potential for phMRI in humans and predict the impact on disease treatment.

07:00 Issues of Animal fMRI Models.
Mathias Hoehn.

07:15 Animal Models of phMRI.
Bruce G. Jenkins.

07:30 Prospects for Human phMRI.
Irene Tracey.

07:45 Discussion.
MORNING CATEGORICAL COURSE
Abdominal Imaging
Room A207
07:00 – 08:00

Chair: Donald G. Mitchell

Educational Objectives
Upon completion of this course, participants should be able to:

• Implement modern MR applications for diagnosing focal and diffuse liver disease;
• Incorporate into their practices recent developments for MR imaging of the pancreas and biliary tract, including MR cholangiopancreatography;
• Use MRI to diagnose extrahepatic disease, such as that of the bowel and peritoneum, as well as vascular disease using state of the art MR angiographic techniques.

07:00 Abdominal MRA.
George A. Holland.

07:50 Questions.

MORNING CATEGORICAL COURSE
The Nano-Meter Film: How MRS and MRI Can Probe Tissue Microstructure
Room C106
07:00 – 08:00

Chairs: Chris Boesch
R. Mark Henkelman

Educational Objectives
Upon completion of this course, participants should be able to:

• Describe methods in MRS and MRI that allow studies of tissue ultra-structure
• Identify areas in which MR can contribute to the knowledge of tissue organization
• Evaluate potential applications and limitations of MR methods to study compartmentation, order, and transport processes in vivo
• Generate an overview of advanced methods in MRS and MRI that give information on the nanometer scale
• Explain the influence of tissue structure upon MR parameters.

The final five minutes of each talk will be set aside for questions.

07:00 Diffusion MRI.
David G. Norris.

07:30 Diffusion MRS.
Klaas Nicolay.

08:00 Adjournment.
PLENARY LECTURES
Advanced Processing and Display
Ballroom
08:15 – 09:30

Chairs: Sarah J. Nelson
 Michael H. Buonocore

Educational Objectives
Upon completion of this session participants should be able to:

- Describe tools and techniques for visualizing scientific and medical data
- Describe growth of computational power and graphics speed
- Compare processing and display strategies used in imaging research
- Explain challenges of visualizing spatially resolved physiological data
- Predict ways that data will be visualized in the future

08:15 554. Advanced Processing and Visualization in the World.
 Kurt Akeley.
 SGI, Mountain View, CA, USA.

08:40 555. Methods and Applications in Brain Imaging.
 Alan C. Evans.
 Montreal Neurological Institute, Montreal, Quebec, Canada.

09:05 556. Advanced Processing and Display: Methods and Applications in Body Imaging.
 Elliott McVeigh.
 National Institutes of Health, Bethesda, MD, USA and Johns Hopkins University School of Medicine, Baltimore, MD, USA.
RF Coil Design
Room A102
10:30 – 12:30

Chairs: Mark A. Griswold
Barbara L. Beck

Philips Medical Systems, Best, The Netherlands.

10:42 558. Planar Strip Array Antenna for Parallel Spatial Encoded MRI.
Johns Hopkins University, Baltimore, MD, USA.

10:54 559. SMASH RF Coil Arrays: Specialized Design Considerations.
J. Willig, R. Brown, T. Eagan and S. Shvartsman.
Case Western Reserve University, Cleveland, OH, USA.

11:06 560. Effects of End Ring Configuration on Homogeneity in a Birdcage Coil.
C.M. Collins, P.J. Delp and M.B. Smith.
The Pennsylvania State University College of Medicine, Hershey, PA, USA.

11:18 561. A Novel Quadrature Birdcage Coil for a Vertical B_0 Field Open MRI System.
H. Fujita, W.O. Braum and M.A. Morich.
Picker International, Inc., Cleveland, OH, USA.

11:30 562. SNR Discrimination of Useful MRS Data from a Phased Array.
T. Prock, E. Bassouls, D.J. Collins and M.O. Leach.
Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, UK.

11:42 563. Shielded Surface Coils and Halfvolume Cavity Resonators for Imaging and Spectroscopy Applications at 7 Tesla.
University of Minnesota, Minneapolis, MN, USA.

11:54 564. Analysis of the Interaction between RF Field and Sample with a Surface Coil at 7.0T.
The Pennsylvania State University College of Medicine, Hershey, PA, USA and University of Minnesota, Minneapolis MN, USA.

12:06 565. Circularly Polarized RF Helmet Coil for Brain Studies at 7 Tesla.
The University of Minnesota Medical School, Minneapolis, MN, USA and Max-Planck-Institute of Cognitive Neuroscience, Leipzig, Germany.

M. Alecci and P. Jezzard.
John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK.
MR Spectroscopy of Cells, Body Fluids and Other
Room A108
10:30 – 12:30

Chairs: Sabrina M. Ronen
Zaver M. Bhujwalla

10:30 567. N-acetyl-aspartate: *In-vitro* Expression in Oligodendrocytes; Implications for Proton-MRS Signal *in vivo*.
K.K. Bhakoo and P. Styles.
University of Oxford, Oxford, UK.

University College, London, Medical School, London, UK; University of Manchester, Manchester, UK and Oxford University, Oxford, UK.

10:54 569. Implication of Hyperammonemic Conditions on Astrocytic Lipid Metabolism.
C. Zwingmann and D. Leibfritz.
University of Bremen, Bremen, Germany.

11:06 570. Effects of Extracellular Acidification on Lipid/Phospholipid Synthesis of Neural Cell Lines Studied By One- and Two-Deimensional NMR Spectroscopy.
K. Glunde, J. Engelmann and D. Leibfritz.
Universität Bremen, Bremen, Germany.

11:18 571. The Effect of an Anti-Inflammatory Agent Indomethacin on Human Vascular Endothelial Cell Phospholipids.
N. Mori, K. Natarajan, V.P. Chacko, D. Artemov and Z.M. Bhujwalla.
The Johns Hopkins University, School of Medicine, Baltimore, MD, USA.

11:30 572. Ras Transformation Could Be Detectable By MRS.
S.M. Ronen, L.E. Jackson and M.O. Leach.
Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey, UK.

11:42 573. Detection of Neutral Lipid Droplets in Fas-Induced Apoptotic Jurkat T-Cells.
N.M. Al-Saffar, P.A. Clarke, D. Robertson, M.O. Leach and S.M. Ronen.
Institute of Cancer Research, Royal Marsden Hospital, Sutton Surrey, UK.

N. Harper, N. Sathasivam and E.J. Delikatny.
University of Sydney, Sydney, Australia.

12:06 575. Multinuclear Magnetic Resonance Imaging and Spectroscopy of Prostate Cancer Cell Invasion.
The Johns Hopkins University School of Medicine, Baltimore, MD, USA and University of Arizona, Tucson, AZ, USA.

12:18 576. Analysis of 2H Enrichment in All Positions of Plasma Glucose by 2H NMR Spectroscopy Following Infusion of 2H2O.
J.G. Jones, A.D. Sherry and C.R. Malloy.
University of Texas, Southwestern Medical Center, Dallas, TX, USA.
CLINICAL CATEGORICAL:
Head and Neck Imaging
Room A201
10:30 – 12:30

Chair: Jonathan S. Lewin

Educational Objectives
Upon completion of this course, participants should be able to:

- Compare the normal and pathological MR imaging appearance of the sinuses and nasal cavity;
- Apply the latest MR imaging techniques to diagnose abnormalities of the brachial plexus;
- Describe the rationale for pulse sequence selection in the head and neck, and the advantages of MRI over CT in evaluation of this region;
- Discuss imaging issues in evaluation of the larynx and hypopharynx.

10:30 Sinonasal MRI.
 David M. Yousem.

11:00 Brachial Plexus.
 Robert W. Dalley.

11:30 Evaluating Cancer of the Pharynx.
 Laurie A. Loevner.

12:00 What Sequence Should I Use?
 Suresh Mukherji.
Registration, Segmentation, and Tissue Characterization
Room A207
10:30 – 12:30

Chairs: Zhi-Pei Liang
 Hamid Soltanian-Zadeh

10:30 577. Detection of Areas with Viable Remnant Tumor in Postchemotherapy Patients with Ewing's Sarcoma by Dynamic Contrast-Enhanced MRI Using a Neural Network.
 Leiden University Medical Center, Leiden, the Netherlands.

10:42 578. Tissue Characterization of Multiparameter MRI with Histopathological Validation in Experimental Cerebral Ischemia in Rat.
 Henry Ford Hospital, Detroit, MI, USA and Oakland University, Rochester, MI, USA.

 University of Pennsylvania Medical Center, Philadelphia, PA, USA.

 University of Queensland and Princess Alexandra Hospital, Brisbane, Australia and SmithKline Beecham Pharmaceuticals, Cambridge, UK.

 Confirma, Inc. Kirkland WA, USA; University of Texas, M.D. Anderson Cancer Center, Houston TX, USA; Washington State University, Pullman, WA, USA and First Hill Imaging, Seattle WA, USA.

11:30 582. Independent Component Analysis of Multi-Channel MRI Data.
 S. Muraki and T. Nakai.
 Electrotechnical Laboratory (ETL), Tsukuba, Japan.

11:42 583. Detecting Bilateral Brain Abnormalities with Voxel-Based Morphometry.
 University College London, London, UK.

11:54 584. A New Method for the Registration of EPI fMRI and Gradient Echo T1-Weighted Volume Data.
 L. Lemieux.
 University College London, London, UK and National Society for Epilepsy, Chalfont St. Peter, UK.

 Yale University School of Medicine, New Haven, CT, USA.

 M.S. NessAiver and S. Biswas.
 University of Maryland School of Medicine, Baltimore, MD, USA.
Pediatric MR Imaging and Spectroscopy
Room C106
10:30 – 12:30

Chairs: Petra Pouwels
David Gadian

University of Bern, Bern, Switzerland.

10:42 588. Fetal Brain Development as Reflected in Metabolite Ratios Recorded by 1H MRS.
A. van den Bergh, A. Heerschap, R. Kok and P. van den Berg.
University Hospital Nijmegen, Nijmegen, The Netherlands.

10:54 589. Myelin Metabolites and Brain Water are Abnormal in Patients with Vanishing White Matter Disease (VWMD).
Huntington Medical Research Institutes, Pasadena, CA, USA; Rudi Schulte Research Institute, Santa Barbara, CA, USA and University of California, Los Angeles, CA, USA.

Harvard Medical School, Boston, MA, USA; University of Geneva, Geneva, Switzerland; University of Berne, Berne, Switzerland and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Washington University School of Medicine, St. Louis, MO, USA.

11:30 592. Patterns of Global Apparent Diffusion Coefficient Distribution in Normal and Asphyxiated Neonatal Brain.
University of Leeds and Leeds General Infirmary, Leeds, UK.

University of Pennsylvania Medical Center and Children's Hospital of Philadelphia, Philadelphia, PA, USA.

University College London Medical School and Great Ormond St. Hospital for Children, London, UK.

12:06 595. Quantitative T_1 and T_2 Changes in White Matter of Children Treated for ALL.
W. E. Reddick and J. O. Glass.
St. Jude Children's Research Hospital, Memphis, TN, USA.
Quantitative Assessment of Brain Development in the Premature Infant Post Hemorrhagic Hydrocephalus.

Harvard Medical School, Boston, MA, USA; University of Geneva, Geneva, Switzerland; Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA; University of Otago, Christchurch School of Medicine, Christchurch, New Zealand and Children's Hospital, Boston, MA, USA.
MR Spectroscopy - Other
Room C205
10:30 – 12:30

Chairs: Peter S. Allen
Gilles F. Bloch

10:30 597. Semiselective POCE NMR Spectroscopy.
Service Hospitalier Frédéric Joliot, Orsay, France.

I-Y. Choi and R. Gruetter.
University of Minnesota, Minneapolis, MN, USA.

Yale University School of Medicine, New Haven, CT, USA and Brookhaven National Laboratory, Upton, NY, USA.

University of Minnesota, Minneapolis, MN, USA; National Research Council, Winnipeg, MB, Canada and Princeton University, Princeton NJ, USA.

11:18 601. An Investigation of the Relationship between T_2 and the Absorbed Dose in Radiation Dosimetry Polymer Gels.
Centre for Medical and Health Physics and Centre for Instrumental and Developmental Chemistry Queensland University of Technology, Brisbane, Australia.

Y. Wu, J.L. Ackerman, E.S. Strawich, C.C. Rey and M.J. Glimcher.
Children's Hospital, Boston, MA, USA; Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA and Institut National Polytechnique, Toulouse, France.

11:42 603. Two-Dimensional Localised MRS for Applications In Vivo.
University of Oxford, Oxford, UK.

University and ETH Zurich, Zurich, Switzerland.

12:06 605. GABA Detection by Longitudinal Scalar Order Difference Editing.
Yale University School of Medicine, New Haven, CT, USA and National Institutes of Health, Bethesda, MD, USA.
Friday AM

fMRI: Insights to Neuroscience
Room C209
10:30 – 12:30

Chairs: Robert Turner
Mark S. Cohen

10:30 606. Activation in Multiple Cortical Regions in a Visually Cued Grip Force Task: An Event-Related fMRI Study.
University Hospital and University and ETH, Zurich, Switzerland.

AIST, MITI, Tsukuba, Japan; Toyohashi Sozo College, Toyohashi, Japan; Stanford University, Stanford, CA, USA and National Institute for Physiological Sciences, Okazaki, Japan.

10:54 608. The fMRI Response Associated with Static Force Contractions in the Human.
Brookhaven National Laboratory, Upton, NY, USA and State University of New York, Stony Brook, NY, USA.

11:06 609. Functional Connectivity in the Cortical and Subcortical Regions of the Motor System.
M.E. Meyerand, C.H. Moritz, D. Cordes, M. Quigley and V.M. Haughton.
University of Wisconsin, Madison, WI, USA.

Université Bordeaux 2, Bordeaux, France.

University Hospital Maastricht, Maastricht, The Netherlands.

11:42 612. Functional Magnetic Resonance Imaging in Rats Subjected to Noxious Electrical and Chemical Stimulation of the Forepaw.
National Research Council, Winnipeg, MB, Canada.

11:54 613. fMRI Assessment of the Chinese Character-Word Dissociation Hypothesis of Cerebral Laterality.
University of Texas Health Science Center, San Antonio, TX, USA; University of Hong Kong, Hong Kong and University of Pittsburgh, Pittsburgh, PA, USA.

University of Minnesota, Minneapolis, MN, USA.

12:18 615. Event Related fMRI During Retrieval Encoded Spatial Scenes.
Vrije Universiteit, Amsterdam, The Netherlands.
POSTER SESSIONS

Hall C
Monday: 14:00 – 16:00
Tuesday – Wednesday: 13:30 – 15:30

Young Investigator Awards Finalists

Poster 4 and 5 will also be presented in the oral session Hyperpolarized Gas Imaging in the Lung on Monday, 3 April, 2000 at 11:00 in Room A102.

T 4. Young Investigator Awards Finalist: Probing Lung Physiology with Xenon Polarization Transfer Contrast (XTC).
K. Ruppert, J.R. Brookeman, K.D. Hagspiel and J.P. Mugler III.
University of Virginia School of Medicine, Charlottesville, VA, USA.

University of Virginia, Charlottesville, VA, USA.

Poster 80 will also be presented in the oral session Diffusion Tensor MRI of the Central Nervous System on Monday, 3 April, 2000 at 16:30 in Room A102.

The Weizmann Institute of Science, Rehovot, Israel; Tel-Aviv University, Tel-Aviv, Israel and Beit Levinstein Hospital, Raanana, Israel.

Poster 228 will also be presented in the oral session MR Imaging of Brain: Multiple Sclerosis on Tuesday, 4 April, 2000 at 16:00 in Room A108.

W 228. Young Investigator Awards Finalist: Magnetization Transfer and Multi-Component T_2 Measurements with Histopathologic Correlation in an Experimental Model of Multiple Sclerosis.
John P. Robarts Research Institute and London Health Sciences Center, London, Ontario, Canada.

Poster 300 will also be presented in the oral session Rapid Imaging II on Wednesday, 5 April, 2000 at 10:30 in Room A207.

M 300. Young Investigator Awards Finalist: Interactive Fast Spin Echo Imaging.
Mayo Clinic, Rochester, MN, USA.

Poster 396 will also be presented in the oral session Motion and Artifacts on Wednesday, 5 April, 2000 at 16:00 in Room C205.

M 396. Young Investigator Awards Finalist: Postprocessing Technique to Correct for Background Gradients in Image-Based R_2^* Measurements.
M.A. Fernández-Seara and F.W. Wehrli.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.
POSTER WALKING TOUR
Angiogenesis
Hall C
Monday: 14:00 – 16:00

Chairs: Kevin Brindle
 Anwar R. Padhani

14:00 616. New MRI Contrast Agent for Labeling of Tumor-Associated Macrophages that Stimulate Tumor Angiogenesis.
 University of Arkansas for Medical Sciences and Little Rock VA Hospital, Little Rock, AR, USA.

 Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.

 University of Manchester, Manchester, UK and AstraZeneca, Macclesfield, Cheshire, UK.

 A. Jackson, X.P. Zhu, A. Kassner, Y. Watson and K.L. Li.
 University of Manchester, Manchester, UK and Philips Medical Systems, Hammersmith, London, UK.

 Henry Ford Hospital, Detroit, MI, USA.

 St. Joseph's Health Centre; The University of Western Ontario and Robarts Research Institute, London, ON, Canada.

 M-L. Wu, W-C. Wu, C-W. Ko, C-Y. Chen and H-W. Chung.
 National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

14:28 623. Tumor Oxygen Dynamics with Respect to Growth and Respiratory Challenge by 19F NMR EPI.
 D. Zhao, A. Constantinescu, E.W. Hahn and R.P. Mason.
 University of Texas, Southwestern Medical Center, Dallas, TX, USA.

 C. Hayes, A.R. Padhani and M.O. Leach.
 Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey, UK.

 Case Western Reserve University, Cleveland, OH, USA.
POSTER WALKING TOUR
MR Spectroscopy of Degenerative and Inflammatory Brain Disease
Hall C
Monday: 14:00 – 16:00

Chairs: Norbert Schuff
 Hoby P. Hetherington

14:00 626. Absolute Brain Metabolite Concentrations In Multiple Sclerosis During Therapy Measured by MRS at 3 T.
 Physikalisch-Technische Bundesanstalt and Jüdisches Krankenhaus, Berlin, Germany.

14:04 627. 1H MRS Study in Occipital Gray Matter of Multiple Sclerosis Patients.
 Azienda Ospedaliera di Perugia and Perugia University, Perugia, Italy and ASL n. 3, Foligno, Italy.

14:08 628. Neuronal Dysfunction in the Cerebral Cortex of the Multiple Sclerosis Brain Demonstrated with Quantitative Magnetic Resonance Spectroscopic Imaging.
 University College London, London, UK; Karl-Franzens-University, Graz, Austria and National Society for Epilepsy, Chalfont St. Peter, UK.

14:12 629. Acetate Metabolism Altered in Some Multiple Sclerosis Plaques.
 R. Sharma, H. Yu, J. Wolinsky and P. Narayana.
 University of Texas-Houston Medical School, Houston, TX, USA.

14:16 630. 1H MRSI Measurement of Early Detection and Longitudinal Changes in ALS.
 University of California and DVA Medical Center, San Francisco, CA, USA.

14:20 631. MR Imaging and Localized 1H Spectroscopy of the Precentral Gyrus in Amyotrophic Lateral Sclerosis.
 University of Miami, Miami, FL, USA and Picker International, Highland Heights, OH, USA.

14:24 632. Study of the Primary Motor Cortex in Amyotrophic Lateral Sclerosis by Quantitative 1H MRS.
 Ospedale Policlinico di Perugia and Università di Perugia, Perugia, Italy and ASL n. 3, Foligno, Italy.

14:28 633. 1H-MRS Reveals Diffuse Neuronal Injury in Amyotrophic Lateral Sclerosis.
 University of New Mexico Health Science Center, Albuquerque, NM, USA.

14:32 634. Relationship Between Metabolite Ratios and Degree of Cognitive Impairment in Alzheimer's Disease and Multi-Infarct Dementia Using Clinical Proton MRS at 1.0 T.
 A.D. Waldman and G.S. Rai.
 National Hospital for Neurology and Neurosurgery and Whittington Hospital, London, UK.

14:36 635. Diagnostic Impact of Proton NMR Spectroscopy (1H MRS) in Dementia, A Comparative Study of Different Dementias and Mild Cognitive Impairment.
 University of Frankfurt/Main, Frankfurt, Germany.

14:40 636. Proton Chemical Shift Imaging in the Pick Complex.
 Kyoto Prefectural University of Medicine, Kyoto, Japan.
POSTER WALKING TOUR
RF Coils
Hall C
Tuesday: 13:30 – 15:30

Chairs: Richard W. Briggs
Joseph Murphy-Boesch

P.J. Cassidy, K. Clarke and D.J. Edwards.
University of Oxford, Oxford, UK.

13:34 638. Homogeneous Truncated Head Coil for Vertical Field.
E. Boskamp.
GE Medical Systems, Milwaukee, WI, USA.

W.J. Rogers and E. Visser.
Allegheny General Hospital, Pittsburgh, PA, USA and Cordis Europe N.V., Roden, The Netherlands.

13:42 640. A Feasibility Study of a Dual Mode Loop and Loopless Catheter Probe Allowing Simultaneous Imaging With Both Modes.
D.J. Gilderdale and D.J. Larkman.
Imperial College School of Medicine, Hammersmith Hospital, London, UK.

13:46 641. Implications of Cable Shield Currents at 3.0 and 4.7 Tesla.
University of Florida, Gainesville, FL, USA and The National High Magnetic Field Laboratory, Tallahassee, FL, USA.

S.M. Varosi, G.R. Duensing and D.A. Molyneaux.
MRI Devices Corporation, Gainesville, FL, USA.

C.C. Guclu and P. Steen.
General Electric Medical Systems, Milwaukee, WI, USA.

G.C. Scott, P.A. Rivas and B.S. Hu.
Stanford University, Stanford, CA, USA.

M. Alecci and P. Jezzard.
John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK.

Université Paris -Sud, Orsay, France.

C.M. Collins and M.B. Smith.
The Pennsylvania State University College of Medicine, Hershey, PA, USA.
648. Parametric Studies of Electromagnetic Compatibility between RF Hyperthermia and MR Systems.

Technische Universität, Charité Virchow Klinikum and Physikalisch-Technische Bundesanstalt, Berlin, Germany.
POSTER WALKING TOUR
Flow Quantification: Methods and Applications
Hall C
Tuesday: 13:30 – 15:30

Chairs: Thomas K.F. Foo
David N. Firmin

 C.M. Tsai and D.G. Nishimura.
 Stanford University, Stanford, CA, USA.

 University Hospital Maastricht, Maastricht, The Netherlands and Saint Joseph Hospital, Veldhoven, The Netherlands.

 Aarhus University Hospital, Aarhus, Denmark and Philips Research Laboratories, Hamburg, Germany.

 Leiden University Medical Center, Leiden, The Netherlands and Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.

 University Hospital, Hvidovre, Denmark.

 Aarhus University Hospital, Aarhus, Denmark.

13:54 655. Delayed Cardiac Recovery from Physical Exercise Long After Repair of Tetralogy of Fallot: Assessment by Ultra-Fast MRI.
 Leiden University Medical Center, Leiden, The Netherlands and the Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.

 University Medical Center Utrecht, Utrecht, The Netherlands.
POSTER WALKING TOUR
MRI Microscopy
Hall C
Wednesday: 13:30 – 15:30

Chairs: Gheorghe D. Mateescu
Richard W. Bowtell

13:30 657. Anatomical Phenotyping of CRF Overexpressing Transgenic Mice by MRI.
N. Beckmann, D. Baumann, K. Bruttel, C. Gentsch and M. Rudin.
Novartis Pharma AG, Basel, Switzerland.

M. Dhenain, S.W. Ruffins, A. Dhenain and R.E. Jacobs.
California Institute of Technology, Pasadena, CA, USA.

Duke University Medical Center, Durham, NC, USA.

13:42 660. MRI as a Tool to Serially Assess the Progression of Heart Failure in a Mouse.
University of Virginia, Charlottesville, VA, USA.

13:46 661. Multiple Component Water Diffusion Observed In Isolated Single Neurons.
University of Florida, Gainesville, FL; The National High Magnetic Field Laboratory, Tallahassee, FL; and University of Illinois, Chicago, IL, USA.

13:50 662. Microscopic Heterogeneity of Red Cell Transit Time, Path Length and Velocity in the Cerebral Cortex.
A.G. Hudetz.
Medical College of Wisconsin, Milwaukee, WI, USA.

13:54 663. Determination of Biomechanical Properties of Joint Cartilage by Dynamic MRT - a NMR Microscopic Study.
G. Hanke, U. Reibetanz and W. Grünner.
Universität Leipzig, Leipzig, Germany.

I. Serča, P. Jevnikar, A. Sepe and N. Funduk.
Jožef Stefan Institute and Dental Clinic, Ljubljana, Slovenia.

14:02 665. Imaging the Long Range Dipolar Field in Structured Liquid State Samples.
S. Gutteridge, C. Ramanathan and R. Bowtell.
University of Nottingham, Nottingham, UK.
POSTER WALKING TOUR
Registration, Segmentation, and Tissue Characterization
Hall C
Wednesday: 13:30 – 15:30

Chairs: Max A. Viergever
Louis Lemieux

University of Manchester and Central Manchester Healthcare Trust, Manchester, UK.

A. Bernasconi, S. Antel, N. Bernasconi, F. Dubé, A. Olivier, F. Andermann, D.L. Collins and D.L. Arnold.
McGill University, Montreal, Quebec, Canada.

13:38 668. How Does the Signal-to-Noise Ratio Influence Texture Measures?
A.M. Fenstad, A. Lundervold, M. Bock and L.R. Schad.
University of Bergen, Bergen, Norway and German Cancer Research Center (DKFZ), Heidelberg, Germany.

13:42 669. Unsupervised Segmentation of Clinical Stroke with Multiparameter MRI.
Henry Ford Hospital, Detroit, MI, USA and Oakland University, Rochester, MI, USA.

Gray Laboratory Cancer Research Trust, Northwood, Middlesex, UK.

X. Ji, J. Ma, C. Bulkes and Z-P. Liang.
GE Medical Systems, Milwaukee, WI, USA and University of Illinois, Urbana, IL, USA.

13:54 672. An Automatic Algorithm for Skin Surface Extraction from MR Scans.
O. Skinjar and J. Duncan.
Yale University School of Medicine, New Haven, CT, USA.

13:58 673. The Effect of the Starting Image Volume on Brain Segmentation Results.
A.M. Smith and T. Duprez.
Université catholique de Louvain, Louvain, Belgium.

14:02 674. Serial Hippocampal and Cerebellar Volumetry in Coregistered Scan Pairs: Reproducibility In A Blinded Study.
National Society for Epilepsy, Chalfont St. Peter, Bucks, UK and University College London, London, UK.

University of Manchester and Central Manchester Healthcare NHS Trust, Manchester, UK.

14:10 676. The Intimate Combination of Low- and High Resolution Image Data: II. Fourier Space PET and 1H2O MRI, PEMRI.
Brookhaven National Laboratory, Upton, NY, USA and State University of New York, Stony Brook, NY, USA.
677. Registration of In-Vivo MRI to Postmortem Brain Photographs.
University of Southern California, Los Angeles, CA, USA.
POSTER WALKING TOUR

Rapid Imaging

Hall C
Thursday: 13:30 – 15:30

Chairs: Gary H. Glover
Graeme C. McKinnon

13:30 **678.** POCS Based Image Reconstruction for SMART Imaging.
S. Lee and D.C. Noll.
University of Michigan, Ann Arbor, MI, USA.

13:34 **679.** Split-Displaced U-FLARE: A New Variant of Fast Spin Echo Imaging.
W. Dreher, D. Mayer and D. Leibfritz.
Universität Bremen, Bremen, Germany.

13:38 **680.** Spatial Three Dimensional Imaging Using RUFIS.
J.-J. Hsu and I.J. Lowe.
University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA.

13:42 **681.** Simultaneous Image Refocusing (SIR): A New Approach to Multi-Slice MRI.
D.A. Feinberg, T.G. Reese and V.J. Wedeen.
Washington University, St. Louis, MO, USA and Massachusetts General Hospital, Charlestown, MA, USA.

J. Hennig and K. Scheffler.
University Hospital, Freiburg, Germany.

13:50 **683.** Single Slab High Resolution 3D Whole Brain Imaging Using Spiral FSE.
University of California, San Diego, CA, USA.

Stanford University, Stanford, CA, USA.

13:58 **685.** 4Hz Volumizer fMRI Acquisition Using Multi-Slice PRESTO-EPI.
A.M. Gibson, A.M. Peters, R.J. Coxon, P.G. Morris and R. Bowtell.
University of Nottingham, Nottingham, UK.

14:02 **686.** Ultra-Fast Heavily T₂* Weighted 3D Brain Imaging Using a Half k-space PRESTO Acquisition.
J.A. Brookes, C. Delalande, M. Ries, B. Dilharreguy, R.A. Jones and C.T.W. Moonen.
Université Victor Segalen Bordeaux II, Bordeaux, France.

14:06 **687.** Three-Dimensional T₂-Weighted Imaging of the Brain Using Very Long Spin-Echo Trains.
J.P. Mugler III, B. Kiefer and J.R. Brookeman.
University of Virginia School of Medicine, Charlottesville, VA, USA and Siemens Medical Engineering Group, Erlangen, Germany.
Poster Walking Tours

MR Angiography: Technique Optimization
Hall C
Thursday: 13:30 – 15:30

Chairs: Michael V. Knopp
Michael Bock

13:30 688. Clinical Evaluation of 75 Patients With Aortic Disease Using Contrast-Enhanced MRA and Non-Contrast-Enhanced MRA with ECG-gated 3D half-Fourier FSE.
Saiseikai Kumamoto Hospital, Kumamoto, Japan; Toshiba Medical Systems Division, Tochigi, Japan and Kumamoto University School of Medicine, Kumamoto, Japan.

13:34 689. Quantitative Evaluation of Peripheral MRA in 139 Consecutive Patients Using Bolus Chase 3D MRDSA Combined with 2D MRDSA.
Weill Medical College of Cornell University, New York, NY, USA.

University of Michigan, Ann Arbor, MI, USA; German Cancer Research Center (dkfz), Heidelberg, Germany and General Electric Medical Systems, Milwaukee, WI, USA.

13:42 691. Peripheral MRA with Flexible Choice of Imaging Parameters for Each Station.
Academic Hospital Maastricht, Maastricht, The Netherlands.

13:46 692. Blood-Flow-Velocity-Dependent Method with 3-Phase Infusion of Reduced-Dose Gadolinium in Moving-Table 3D MR Angiography.
Seichokai Fuchu Hospital, Osaka, Japan; Wakayama Medical College, Wakayama, Japan; Siemens-Asahi Medical Technologies Ltd., Tokyo, Japan and Siemens Medical Systems Inc, Chicago, IL, USA.

W. Kong and E.M. Haacke.
Washington University and The MRI Institute for Biomedical Research, St. Louis, MO, USA.

W.J. Rogers, N. Reichek and R.E. Pyeritz.
Allegheny General Hospital, Pittsburgh, PA, USA.

University Hospital Maastricht, Maastricht, The Netherlands.

14:02 696. Time-Resolved Contrast-Enhanced MRA with Undersampled Projection Trajectories and Vessel Segmentation.
University of Wisconsin, Madison, WI, USA.

14:06 697. A New Way to Perform 3D Time-Resolved Angiography.
B. Madore and N.J. Pelc.
Stanford University School of Medicine, Stanford, CA, USA.
14:10 **698.** A Comparison of Cardiac-Synchronized and Unsynchronized Gadolinium-enhanced Three-dimensional Magnetic Resonance Angiography of the Thoracic Aorta.

J.W. Goldfarb, A.E. Holland, F.M.J. Heijstraten, S. Skotnicki and J.O. Barentsz.

University Hospital Nijmegen, Nijmegen, Netherlands.

R. Watts, Y. Wang, M.R. Prince and P.A. Winchester.

Weill Medical College of Cornell University, New York, NY, USA.
Perfusion: Arterial Spin Labeling - Applications

Hall C
Thursday: 13:30 – 15:30

700. Quantitative Measurements of CO₂-Induced Increases in Perfusion Using a Spin Labelling Technique in Normal Volunteers.
J. Goodey, E. Rostrup, H. Gesmar, H. Larsson and S.F. Keevil.
The Guy's, King's and St. Thomas' School of Medicine and Guy's Hospital, London, UK and Hvidovre University Hospital, Copenhagen, Denmark.

701. Quantification of Cerebral Blood Flow Increases During Moderate Hypercapnia.
K.S. St. Lawrence, F.Q. Ye, B.K. Lewis, J.A. Frank and A.C. McLaughlin.
National Institutes of Health, Bethesda, MD, USA.

702. Quantitative Evaluation of Vasomotor Reactivity By Acetazolamide Challenge Using FAIR Perfusion MRI.
Wake Forest University School of Medicine, Winston-Salem, NC, USA; Duke University School of Medicine, Durham, NC, USA and University of Michigan School of Medicine, Ann Arbor, MI, USA.

703. The Evaluation of the Perfusion Imaging in Rabbits With Acute Cerebral Ischemia Using FAIR Sequence and MR Dynamic Perfusion Imaging With Gd-DTPA.
PLA General Hospital, Beijing, China; GEYMS, Tokyo, Japan, and GEMS China, Beijing, China.

704. Dependence of FAIRER Lung Perfusion Signal on Cardiac Cycle, Slice Orientation, and Inversion Time.
S.D. Keilholz-George, J. Knight-Scott and S.S. Berr.
University of Virginia, Charlottesville, VA, USA.

705. Multi-Slice Perfusion MRI of the Kidney Using SPDI-CASL.
S.L. Talagala and A.W. Kam.
University of Pittsburgh, Pittsburgh, PA, USA.

706. Measurement of Renal Perfusion by Arterial Spin Labeling.
N. Karger, S. Lüsse, J. Biederer, M. Heller and C-C. Glüer.
Universitätsklinikum Kiel, Kiel, Germany.

Perfusion: Arterial Spin Labeling - Techniques

Hall C
Thursday: 13:30 – 15:30

707. FAIR Perfusion Signal (ΔM) at 1.5T and 3T.
National Institutes of Health, Bethesda MD, USA.

708. Physiological and Hardware Considerations for Continuous Arterial Spin Labelling in Humans.
University College London, London, UK.
709. Decreasing Residual Magnetization Transfer Effects in SPDI-CASL Perfusion MRI by Pulsed Magnetization Transfer.
A.W. Kam and S.L. Talagala.
University of Pittsburgh, Pittsburgh, PA, USA.

710. Multiple-Slice Perfusion Imaging of Rat Brain Using a Saddle Coil for Spin Tagging.
C. Wei, V. Volotovsky, R. Buist and J. Peeling.
University of Manitoba, Winnipeg, Manitoba, Canada.

D.P. Lewis, C.A. Branch and J.A. Helpern.
Nathan S. Kline Institute, Orangeburg, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA and New York University School of Medicine, New York, NY, USA.

712. Offset Correction in FAIR Imaging.
Technical University of Denmark and Hvidovre Hospital, Copenhagen, Denmark.

713. A Dual-Echo- Un-Inverted FAIR (UNFAIR) Sequence for Optimized BOLD-Perfusion Measurements: Comparison with the FAIR Technique.
National Institutes of Health, Bethesda, MD, USA.

714. High Sensitivity Single-Shot Perfusion fMRI.
J.H. Duyn and M. Yongbi.
National Institutes of Health, Bethesda, MD, USA.

715. Quantification of Perfusion with Improved Temporal Resolution and Signal to Noise Ratio Using a Look-Locher-EPI-FAIR-\(T_1^2\)\(^*\) Sequence.
University of Nottingham, Nottingham, UK and Unilever Research, Liverpool, UK.

716. Evaluation of Non-Invasive Perfusion-Weighted MRI.
Hiroshima University School of Medicine, Hiroshima, Japan.

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA and University of Virginia, Charlottesville, VA, USA.

Perfusion: Contrast Agents – Applications
Hall C
Thursday: 13:30 – 15:30

718. Whole Brain Quantitative CBF, CBV and MTT Measures from Bolus Tracking Imaging: Application to Hyperacute Stroke Patients.
Université catholique de Louvain, Brussels, Belgium.

719. Dynamic Susceptibility Contrast Magnetic Resonance Imaging (DSC MRI) In Evaluating Regional Cerebral Perfusion Reserve.
S. Arnold, R. Strohschein and M. Markl.
University of Freiburg, Freiburg, Germany.
720. **Cerebral Infarction: Time Course of BBB Permeability Changes Evaluated by Gadolinium-Enhanced Perfusion MR Imaging.**

Y.-J. Liu, I.-J. Huang, C.-Y. Chen and H.-W. Chung.
National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

721. **Regional Cerebral Blood Volume (rCBV) in the Cerebral and Cerebellar Hemispheres in Normal 41 Healthy Adults: Measurement with Contrast-Enhanced Dynamic Echo-Planar Imaging.**

Yokohama City University School of Medicine and Kanagawa Cardiovascular & Respiratory Center, Yokohama, Japan.

722. **Mapping of Microvascular Tortuosity in Moyamoya Syndrome by Estimation of Relative Contrast Recirculation Using Dynamic Susceptibility Contrast-Enhanced MRI.**

Philips Medical Systems, London, UK; University Hospital, Bonn, Germany; Prince of Wales Hospital, Hong Kong and University of Manchester, Manchester, UK.

723. **Comparison of Perfusion MR Imaging and SPECT in the Measurement of rCBF in Moyamoya Disease.**

Asan Medical Center, University of Ulsan and Chul-Jung Army Hospital, Seoul, Korea.

724. **Quantitative Dynamic Contrast-Enhanced MRI in Tumors. A Reproducible Technique in the Head? A Reproducible Technique in the Breast?**

University of Manchester and Christie Hospital, Manchester, UK and AstraZeneca, Macclesfield, Cheshire, UK.

University of Tsukuba, Tsukuba, Japan.

726. **MR Imaging of Perfusion Detects in Mice.**

A. Bashir, J. Bao, M. Simons, M. Post and D. Burstein.
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

727. **Initial Evaluation of an Integrated Approach to MRI Measurement of Cardiac Perfusion.**

University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

728. **Multislice Zonal EPI Myocardial Perfusion Imaging.**

Royal Brompton Hospital and Imperial College, London, UK.

729. **Myocardial Perfusion Reserve Index Imaging Via First-Pass Gd Dynamics in Vasodilated and Rest Conditions.**

J.E. Siebert, M.C. DeLano, J.D. Eisenberg and J.A. Gift.
Michigan State University, East Lansing, MI, USA.

730. **Preliminary Validation of (Semi-) Quantitative Assessment of Dynamic Contrast-Enhanced Myocardial Perfusion Imaging in Patients with Multi-Vessel Coronary Artery Disease.**

Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA.

731. **T2* Renal Perfusion Using NC100150 Injection. Influence of T1-Shortening on the First-Pass Response.**

A. Bjørnerud, L.O. Johansson and H. Ahlström.
Nycomed Imaging A/S, Oslo, Norway and Uppsala University Hospital, Uppsala, Sweden.
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.

733. Application of Singular Value Decomposition in Prostate Perfusion.
Hull University, Hull, UK.

734. Dynamic Contrast-Enhanced MRI With and Without 2% Carbogen Breathing: A Preliminary Study in Rectal Carcinoma Patients.
Mount Vernon Hospital, Northwood, Middlesex, UK.

Abbott Laboratories, Abbott Park, IL, USA.

Perfusion: Contrast Agents - Techniques
Hall C
Thursday: 13:30 – 15:30

R. Strohschein, M. Markl, J. Hennig and S. Arnold.
University of Freiburg, Freiburg, Germany.

737. Quantitative Measurement of an Extraction Fraction by Double Echo Dynamic MRI.
Fukui Medical University, Fukui, Japan and GE-Yokogawa Medical Systems, Tokyo, Japan.

O. Speck, T. Ernst, N.M. DeSilva and L. Chang.
Harbor-UCLA Medical Center, Torrance, CA, USA.

739. A Low Cost Flow Phantom for Quantification of Flow and Volume from Perfusion MRI.
B.J. Young, P. Gibbs and L.W. Turnbull.
University of Hull at Hull Royal Infirmary, Hull, UK.

Sensor Systems, Inc. Sterling, VA, USA.

Ehime University School of Medicine, Ehime, Japan.
University Hospital, Utrecht, The Netherlands.

743. Measurement of Arterial Input Function and Contrast Media Uptake Using Dual Stack SR/T1-FFE.
University of Graz, Graz, Austria.

University of Wisconsin, Madison, WI, USA and Carleton University, Ottawa, ON, Canada.

F. Calamante, D.G. Gadian and A. Connelly.
University College London Medical School, London, UK.

746. Independent Component Analysis (ICA) of MR Cerebral Perfusion Data.
University of Wisconsin, Madison, WI, USA.

National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

X.P. Zhu, A. Lacey, K.L. Li, N. Thacker and A. Jackson.
University of Manchester, Manchester, UK.

749. Curve Fitting of Dynamic MRI Enhancement Data of the Kidney.
University Hospital, Maastricht, the Netherlands and Eindhoven University of Technology, Eindhoven, the Netherlands.

750. Underestimation in MR Measurement of Blood Volume of Brain Tumors.
Fukui Medical University, Fukui, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

K. Suga, M. Mikawa, N. Ogasawara, H. Okazaki, K. Takano, K. Takano and N. Matsunaga.
Yamaguchi University School of Medicine, Ube, Japan and Tokyo Institute of Technology, Yokohama, Japan.

752. Relative rCBF Distributions in Healthy Volunteers: Dynamic Susceptibility Contrast MRI Compared to Te-99m-HMPAO SPECT.
Lund University Hospital, Lund, Sweden and Aarhus University Hospital, Aarhus, Denmark.

753. Absolute Cerebral Blood Flow in Normal Volunteers: A Comparison Between Dynamic Susceptibility Contrast MRI and Xe-133 SPECT.
Lund University Hospital, Lund, Sweden.
Diffusional Restriction, Compartmentation and Exchange

Hall C
Monday: 14:00 – 16:00

J. Wolber, D. Santoro, M.O. Leach and A. Bifone.
The Royal Marsden NHS Trust, Sutton, Surrey, UK.

755. Metabolite ADCs in the Isolated Rat Heart During Ischaemia and Reperfusion.
C. Liess, G.K. Radda and K. Clarke.
University of Oxford, Oxford, UK.

756. Exercise Induced Signal Intensity and ADC Changes in Skeletal Muscle.
L. Ahvenjärvi, J. Jauhiainen, J. Öikarinen and O. Tervonen.
Oulu University Hospital, Oulu, Finland.

757. Time Course of the ADC in Patients with Cerebral Ischemia.
University of Heidelberg Medical School, Heidelberg, Germany.

758. Diffusion Weighted Imaging (DWI) of Early Stroke A Comparison of Fluid-Attenuated Inversion-Recovery (FLAIR) and Non-FLAIR Techniques.
Marquette University; Medical College of Wisconsin and IGC Medical Advances, Milwaukee, WI, USA.

759. Water Diffusion Compartmentation and Anisotropy at High b Values in Human Brain.
C.A. Clark and D. Le Bihan.
Service Hospitalier Frederic Joliot, Orsay, France.

University of Florida, Gainesville, FL, USA.

D.C. Alsop, E.D. Schwartz and D.B. Hackney.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

S.N. Hwang, F.W. Wehrli and D.B. Hackney.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

763. Multieponential Diffusion Imaging of Normal Rat Spinal Cords In Vivo.
University of Florida, Gainesville, FL, USA and the National High Magnetic Field Laboratory, Tallahassee, FL, USA.

764. Diffusion Weighted Imaging of Normal Human Spinal Cords: Detection of Age-Related Morphometric Changes.
P.M. Pattany, A.A. Younis, B.C. Bowen, R.G. Weaver and R.M. Quencer.
University of Miami, Miami, FL, USA and Picker International, Highland Heights, OH, USA.

765. Changes in Water Spin Motion Characteristics After Pilocarpine Induced Status Epilepticus.
C. Wall, S. Eidt, A. Obenaus and E. Kendall.
University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
766. Mono- and Bi-exponential Behavior Coexist in ADC Maps of Subcutaneously Implanted Murine Renal Carcinoma.
B.C. Tom, P.N. Venkatasubramanian and A.M. Wyrwicz.
Northwestern University, Evanston, IL, USA.

767. Mapping the Intracellular and Extracellular Apparent Diffusion Coefficient and Volume Fraction of MCF7 Human Breast Cancer.
Weizmann Institute of Science, Rehovot, Israel.

768. Quantitative Diffusion Analysis in Human White Matter.
S. Peled and D. Ben-Bashat.
Sourasky Medical Center, Tel Aviv, Israel.

769. Unconventional Diffusion Behaviors of Intermolecular Multiple-Quantum Coherences.
Z. Chen and J. Zhong.
University of Rochester, Rochester, NY, USA.

770. The Correlation Between Cell Size and Transmembrane Water Flux for Diffusion Weighted MR-Experiments on Rat Brain Tissue Studied by Monte-Carlo-Simulations.
C. Meier, W. Dreher and D. Leibfritz.
Universität Bremen, Bremen, Germany.

Diffusion Tensor MRI

Hall C
Monday: 14:00 – 16:00

O. Abe, T. Okubo, H. Yamada, T. Masumoto, N. Hayashi, S. Komatsu, H. Kabasawa and K. Ohtomo.
University of Tokyo and GE-Yokogawa Medical Systems, Tokyo, Japan.

772. Spatial-Temporal Heterogeneity in the Pseudo-Normalization of ADC in Human Cerebral Ischemia.
Massachusetts Institute of Technology, Cambridge, MA, USA and Massachusetts General Hospital, Boston, MA, USA.

Washington University School of Medicine, St. Louis, MO, USA.

774. Diffusion Tensor Mapping Of the Human Brain Stem Using Single-Shot Line Scan Imaging.
J. Finsterbusch and J. Frahm.
Biomedizinische NMR Forschungs GmbH, Göttingen, Germany.

775. Diffusion Tensor Tracking of Human Neuronal Fiber Bundles: Simulation of Effects of Noise, Voxel Size and Data Interpolation.
Washington University, School of Medicine, St. Louis MO, USA.

B.A. Moffat and J.M. Pope.
Queensland University of Technology, Queensland, Australia.
777. **Determination of Axonal Damage in Primary Lateral Sclerosis Using Diffusion Tensor Imaging.**
Weill Medical College of Cornell University, New York, NY, USA.

778. **Reversal of DWI Lesions May Be Associated with Increases in Anisotropy.**
Massachusetts Institute of Technology, Cambridge, MA, USA and Massachusetts General Hospital, Boston, MA, USA.

779. **Apparent Diffusion Coefficient Imaging of the Healthy and Transplanted Human Kidney.**
Université Bordeaux 2, Bordeaux, France.

780. **High Resolution Diffusion Anisotropy Mapping of the Brain.**
University of Arizona, Tucson, AZ, USA.

781. **Analysis of Partial Volume Effects in Diffusion-Tensor MRI.**
University of Utah, Salt Lake City, UT, USA.

782. **Errors In the Estimation of Diffusion Tensor and Anisotropic Indices.**
Y. Cao.
Michigan State University, East Lansing, MI, USA.

783. **Total Variation Denoising for Improved Diffusion Tensor Calculation.**
S. Keeling, R. Bammer, F. Fazekas and R. Stollberger.
University of Graz, Graz, Austria.

784. **Fiber-Tractography in Human Brain Using Diffusion Tensor MRI (DT-MRI).**
P.J. Basser, S. Pajevic, C. Pierpaoli, A. Aldroubi and J. Duda.
National Institutes of Health, Bethesda, MD, USA and Vanderbilt University, Nashville, TN, USA.

785. **Histogram Analysis of ADC and Fractional Anisotropy, Measured at Term, in Preterm Infants: Correlations to Birth Weight.**
Stanford University, Stanford, CA, USA.

786. **Regional Cerebral White Matter Diffusion Tensor Measurements Measured at Term in Preterm Infants: Correlations to Birth Weight.**
Stanford Medical Center, Stanford, CA, USA.

787. **Line Scan Diffusion High-Resolution Tensor Images in Normal and Pathologic Brain.**
H. Mamata, Y. Mamata, F. Jolesz and S.E. Maier.
Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA.

788. **In Vivo Neuronal Fiber Tract Mapping in Mouse Using Diffusion Tensor Imaging: Detection of Central Nervous System Phenotypes in Twitcher Mice.**
Washington University, St. Louis, MO, USA and Academia Scinica, Taipei, Taiwan, ROC.

789. **Bootstrap Analysis of DT-MRI Encoding Techniques.**
University of Utah, Salt Lake City, UT, USA.

790. **Distortionless Diffusion Tensor Imaging with UFLARE.**
M. Koch and D.G. Norris.
Max-Planck-Institute of Cognitive Neuroscience, Leipzig, Germany.
791. A Path Integral Approach to White Matter Tractography.
D.S. Tuch, J.W. Belliveau and V.J. Wedeen.
Massachusetts General Hospital, Charlestown, MA, USA.

792. Comparison of Optimization Procedures for Diffusion-Tensor Encoding Directions.
University of Utah, Salt Lake City, UT, USA.

H San Raffaele, University of Milan, Milan, Italy.

Johns Hopkins University Medical School and The Kennedy-Krieger Institute, Baltimore, MD, USA.

795. Serial Assessment of Symptomatic White Matter Lesions with Reductions of the ADC.
A. Gass, S. Behrens, J. Hirsch, O. Sedlaczek, J. Gaa and M.G. Hennerici.
Klinikum Mannheim, University of Heidelberg, Mannheim, Germany.

796. Diffusion Tensor Imaging Reveals Disruption of White Matter Tracts in Ischaemic Leukoaraiosis.
GKT and Institute of Psychiatry, London, UK and University of Leicester, Leicester Royal Infirmary, Leicester, UK.

797. Diffusion Changes in Normal Pressure Hydrocephalus.
Weill Medical College of Cornell University, New York, NY, USA.

Diffusion MRI: Pulse Sequences and Gradient Optimization
Hall C
Monday: 14:00 – 16:00

798. Gradient Preemphasis Calibration in Diffusion-Weighted Echo-Planar Imaging.
University of Cambridge, Cambridge, UK.

O. Heid.
Siemens AG, Erlangen, Germany.

800. Correction of Distortion in ADC Maps Using the Reversed Gradient Method.
University Hospital, Queen's Medical Centre and University of Nottingham, Nottingham, UK.

801. Optimization of B-Value and Gradient Orientation for Diffusion Tensor MRI.
A.H. Poonawalla, C. Karmonik and X.J. Zhou.
The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.

802. Phase Corrected Complex Averaging for Diffusion Weighted Spine Imaging.
GE Medical Systems, Milwaukee, WI and M.D. Anderson Cancer Center, Houston, TX, USA.
Poster Sessions

803. Quantitative Diffusion-Weighted Imaging Using Diffusion Prepared TurboSTEAM.
Q. Nguyen and R.J. Ordidge.
University College London, London UK.

804. Clinical Application of DIFRAD-FSE for High-Resolution Diffusion-Weighted MRI.
University of Arizona, Tucson, AZ, USA.

805. Ungated Diffusion-Weighted Interleaved EPI.
The Guy's, King's & St. Thomas' School of Medicine, Guy's Hospital and University College London Medical School, London, UK.

806. Characteristics and Stability of Different Diffusion Gradient Schemes.
S. Skare, M. Hedehus and T.Q. Li.
Karolinska MR Center, Stockholm, Sweden; Stanford University, Stanford, CA, USA and Princeton University, Princeton, NJ, USA.

807. Rapid Whole Brain Diffusion Mapping Without Susceptibility Artifacts Using Diffusion-Weighted Single-Shot STEAM MRI.
Biomedizinische NMR Forschungs GmbH, Göttingen, Germany.

808. Motion Correction Routine for a Diffusion-Weighted Radial Fast Spin-Echo Sequence.
University of Arizona, Tucson, AZ, USA.

Spatio-Temporal Analysis of fMRI
Hall C
Thursday: 13:30 – 15:30

University of Wisconsin, Madison, WI, USA.

V.D. Calhoun, X. Golay and G. Pearlson.
Johns Hopkins University; University of Maryland and FM Kirby Research Center for Functional Brain Imaging, Baltimore, MD, USA.

811. Parameter-Free Spatio-Temporal Filtering of fMRI Data.
S-C. Ngan, S.M. LaConte, W.F. Auffermann and X. Hu.
University of Minnesota, Minneapolis, MN, USA.

812. Pseudo-Noise fMRI.
O. Heid.
Siemens AG, Erlangen, Germany.

813. Separation of Sequential Activation in Motor fMRI Using Finite-Element EEG Source Imaging.
T-S. Kim and M. Singh.
University of Southern California, Los Angeles, CA, USA.
814. A Weighted-Least Squares Method for Latency Estimation in fMRI.
V.D. Calhoun, M. Kraut, T. Adai and G. Pearlson.
Johns Hopkins University and University of Maryland, Baltimore, MD.

815. What's in the Noise Now?
L.R. Frank, R.B. Buxton and E.C. Wong.
University of California, San Diego, CA, USA.

816. Spatio-Temporal Analysis in fMRI.
C. Gössl, D. Auer and L. Fahrmeir.
Max-Planck-Institute of Psychiatry and University of Munich, Munich, Germany.

817. Harmonic Decomposition and Eigenanalysis of BOLD fMRI Timeseries Data in Different Functional Cortices.
S. Chen, C.A. Bouman and M.J. Lowe.
Indiana University School of Medicine, Indianapolis, IN, USA and Purdue University, West Lafayette, IN, USA.

Stability and Reproducibility of fMRI
Hall C
Tuesday: 13:30 – 15:30

Technische Universität, München, Germany.

819. fMRI Feasibility with Simultaneous EEG Recording.
Geneva University Hospitals and University of Geneva, Geneva, Switzerland.

820. Interference of Acoustic Noise Due to Gradient Pulsing with Visual Stimulation in fMRI.
S.T. Chung, K.J. Jung and H.W. Park.

821. Simulation of Interplay Between Background and Slice Selection Gradients in fMRI.
J. Bodurka, X. Zhao and S-J. Li.
Medical College of Wisconsin, Milwaukee, WI, USA and University School of Medical Sciences, Bydgoszcz, Poland.

Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA.

823. Cardiac Phase Reordering for Artifact Reduction in fMRI.
Hokkaido University, Sapporo, Japan.

P. van Gelderen, D. Waldvogel, K. Ishii and M. Hallett.
National Institutes of Health, Bethesda, MD, USA.

825. Comparison of Scanner Stability for fMRI Investigations with EPI.
BIOMED II.
Kantonsspital Basel, Basel, Switzerland.

827. Improvement of Reliability in Functional MRI.
Research Centre, Jülich, Germany and Otto-von-Guericke University, Magdeburg, Germany.

Analysis of Single-Event fMRI
Hall C
Tuesday: 13:30 – 15:30

828. Detection of Event-Related fMRI Signal With Matched Filters.
E. Pettinelli, A. Londei, J.N. Sanes and G. Hagberg.
Scientific Institute of Foundation Santa Lucia, Rome, Italy.

University of Southern California, Los Angeles, CA, USA.

University Hospital and University ETH, Zurich, Switzerland.

831. Artificial "Initial Dip" in Event-Related fMRI.
University of Connecticut School of Medicine, Farmington, CT, USA.

832. Feasibility of Real-Time Event-Related fMRI.
Brigham and Women’s Hospital, Harvard Medical School and Harvard MIT Health-Science and Technology, Boston, MA, USA.

833. Bayesian Inference for the Shape of the Hemodynamic Response Function in Event-Related fMRI.
Research Institute for Brain and Blood Vessels, Akita City, Japan.

University of Minnesota, Minneapolis, MN, USA and Technical University of Denmark, Lyngby, Denmark.

A. Londei, E. Pettinelli, J.N. Sanes and G. Hagberg.
Scientific Institute of Foundation Santa Lucia, Rome, Italy.

836. Deconvolusion Analysis in Emotional Word Generation Monitored by Random Block and Event-Related fMRI.
University of Florida, Gainesville, FL, USA.
Statistical Analysis of fMRI Data
Hall C
Tuesday: 13:30 – 15:30

837. **Entropy-Based Detection of BOLD Functional Activation in the Human Brain.**
Medical College of Wisconsin, Milwaukee, WI, USA.

838. **Use of Jackknife Resampling Techniques to Estimate the Confidence Intervals of fMRI Parameters.**
B.B. Biswal, P.A. Taylor and J.L. Ulmer.
Medical College of Wisconsin, Milwaukee, WI, USA.

839. **Caveat Correlator: The Limited Selectivity of Cross-Correlation-Based Methods in fMRI.**
National Research Council Canada, Winnipeg, Manitoba, Canada.

840. **Bayesian Approach to Edge Preserving fMRI Restoration.**
S.J. Kisner, J.L. Ulmer and T.M. Talavage.
Purdue University, West Lafayette, IN, USA and Medical College of Wisconsin, Milwaukee, WI, USA.

841. **Validating Clusters in fMRI Data, Derived by Fuzzy Clustering Analysis: A Supervised Approach.**
R. Somorjai, B. Dolenko, R. Baumgartner and M. Jarmasz.
National Research Council Canada, Winnipeg, Manitoba, Canada.

842. **Temporal De-Noising of MR Image Sequences Using Wavelet Domain Filters.**
National Research Council Canada, Winnipeg, Manitoba, Canada and University of Vienna, Vienna, Austria.

843. **fMRI Signal Modeling Using System Identification Techniques.**
L.T. Muftuler and O. Nalcioglu.
University of California, Irvine, CA, USA.

844. **Signal Separation of fMRI Data by Independent Component Analysis.**
MITI, Tsukuba, Japan and National Institute for Physiological Sciences, Okazaki, Japan.

845. **A New Correlation Analysis Using Direct Force Output in Motor Stimulation fMRI Studies.**
Nottingham City Hospital and University of Nottingham, Nottingham, UK.

846. **BIASLESS: Detecting Brain Activation in fMRI Data Without Prior Knowledge of Mental Event Timing.**
D.N. Levin and S.J. Uftring.
University of Chicago, Chicago, IL, USA.

847. **Using Image Entropy to Select Meaningful Spatial Maps in Independent Component Analysis.**
University of California, San Diego, CA, USA and Stanford University, Stanford, CA, USA.

848. **Comparison of Functional MRI Image Realignment Tools Using a Computer Generated Phantom.**
Vanderbilt University, Nashville, TN, USA.
Poster Sessions

849. Two-Way ANOVA for Nonparametric Analysis of Event Related fMRI Data.
W.F. Auffermann, S.-C. Ngan, S. Sarkar, E. Yacoub and X. Hu.
University of Minnesota Medical School, Minneapolis, MN, USA.

850. Performance Comparison of Novelty Indices Used in Blind Source Separation for Preprocessing fMRI Time Series.
National Research Council Canada, Winnipeg, Manitoba, Canada.

851. Detection of Visual Attention Using Partial Least Squares (PLS) Analysis of fMRI Data.
Massachusetts General Hospital and Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA; University of Toronto, Toronto, Ontario, Canada and Albert Einstein College of Medicine, Bronx, NY, USA.

852. Independent Component Analysis of Simultaneous fMRI Motor Tasks.
J. Carew, C. Moritz, V. Haughton, P. Turski, D. Cordes and M.E. Meyerand.
University of Wisconsin, Madison, WI, USA.

853. Wavelet Transform Based Wiener Filtering of Event-Related fMRI Data.
S.M. LaConte, S-C. Ngan and X. Hu.
University of Minnesota, Minneapolis, MN, USA.

854. An Experimental Method to Calculate Type II Errors in Statistical Analysis of fMRI Signals.
L.T. Muftuler and O. Nalcioglu.
University of California, Irvine, CA, USA.

Multi-Modality fMRI

Hall C

Wednesday: 13:30 – 15:30

855. Responses to Intraneural Microstimulation of Single Mechanoreceptive Afferents Can Be Measured Using fMRI.
University of Nottingham, Nottingham, UK; University of Umea, Umea, Sweden; University of North Carolina, Chapel Hill, NC, USA and Unilever Research, Liverpool, UK.

856. BOLD-fMRI Response versus 1 Hz Transcranial Magnetic Stimulation (TMS) Train Length.
Medical University of South Carolina, Charleston, SC, USA.

857. Simultaneous Mapping of Sensorimotor Activation by fMRI and Near IR Optical Topography: Effects of Magnet Environment.
Hitachi Central Research Laboratory, Kokubunji Japan and Yale University School of Medicine, New Haven, CT, USA.

858. Simultaneous VEP and fMRI Recordings: Comparison between EEG Localization and fMRI Activation.
Massachusetts General Hospital, Charlestown, MA, USA and Beth Israel Deaconess Medical Center, Boston, MA, USA.

859. High Accuracy of Matching Spline-Interpolated EEG- with MRI-Derived Head Surfaces.
University of Vienna, Vienna, Austria.
Poster Sessions

860. Simultaneous fMRI and EEG Recordings of Awake and Anesthetized Condition of Rats during Forepaw Stimulation.
R.R. Peeters, I. Tindemans, M. Verhoye and A. Van der Linden.
University of Antwerp, Antwerp Belgium.

861. Comparative Study of fMRI and MEG for Objective Identification of the Central Sulcus in Patients with Brain Tumors.
Tohoku University School of Medicine and Kohnan Hospital, Sendai, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

fMRI: Clinical Applications

Hall C

Wednesday: 13:30 – 15:30

862. Preliminary Evidence of Language Reorganization After Left Hemisphere Injury: A Whole Brain, Event-Related fMRI Study of Sentence Production.
University of Florida, Gainesville, FL, USA.

863. BOLD Response of the Auditory Cortex in Patients With Unilateral Internal Carotid Artery Occlusion.
University of Basel, Basel, Switzerland and University of Freiburg, Freiburg, Germany.

864. Effect of Severe Extra- and Intracranial Artery Disease in BOLD Signal Changes During a Motor Paradigm.
Friedrich-Schiller University, Jena, Germany.

865. Cortical Plasticity after Neonatal Cold Lesion in Rats: An fMRI Study.
Max-Planck-Institute for Neurological Research, Cologne, Germany and University of Düsseldorf, Düsseldorf, Germany.

866. Relationship between fMRI Activation Patterns and Brain Plasticity: Classification of Structural Lesions in the Central Sulus.
Yale University School of Medicine, New Haven, CT, USA.

867. Functional Brain Mapping Using fMRI in Patients with AVM.
Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

868. The Localization of Epileptic Spikes Based on Spike-Triggered fMRI is Consistent with EEG Source Reconstruction.
University College London, London, UK.

869. Functional MRI Activation From Individual Epileptiform Spikes.
D. Messina, K. Krakow, L. Lemieux, J.S. Duncan and D.R. Fish.
University College London, London, UK.
870. Influence of Different Physiological Conditions on the Functional MRI Response Before and During Bicuculline Induced Sub-clinical Epileptic Activity in the Rat Brain.
Karolinska Hospital/Karolinska Institute, Stockholm, Sweden and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.

871. Decrease in Functional Connectivity in Dorsolateral-Prefrontal Cortex of Alzheimer's Subjects.
P. Tiger, Z. Li, P. Antuono, J. Jones and S.-J. Li.
Medical College of Wisconsin, Milwaukee, WI, USA.

872. Resting State BOLD Fluctuations Reflect Impaired Functional Connectivity in Multiple Sclerosis.
Indiana University School of Medicine, Indianapolis, IN, USA.

873. Robust Retest Reliability In Normal But Not Schizophrenia Subjects.
Massachusetts General Hospital, Charlestown, MA, USA.

874. Activation in fMRI during Verbal and Visuospatial Working Memory Tasks in Healthy Controls and Schizophrenic Patients.
A.P. Wunderlich, H. Walter, M. Blankenhorn, G. Groen, S. Schäfer, R. Tomczak and H-J. Brambs.
Ulm University Clinic, Ulm, Germany.

University of Nottingham, Nottinghan, UK.

University of Rochester, Rochester, NY, USA.

877. A Clinically Relevant Rat Model for BOLD fMRI at 1.5T.
D.W Morton, K.R. Maravilla, J.R. Meno and H.R. Winn.
University of Washington, Seattle, WA, USA.

fMRI: Neuroscience Applications
Hall C
Thursday: 13:30 – 15:30

878. Paced Finger Tapping in Children Causes Discrete Motor and Auditory Activation of Brain on fMRI.
Wellcome Department of Cognitive Neurology, London, UK and Children's Hospital Boston, MA, USA.

879. Functional Magnetic Resonance Imaging during Seven Motor Tasks: Variability of Primary and Secondary Motor Activation over 9 Subjects.
M. Rotte, M. Kanowski, A. Dale and H-J. Heinze.
Otto von Guericke University, Magdeburg, Germany and Massachusetts General Hospital, Boston, MA, USA.

University Hospital of Zurich and University Zurich-Irchel, Zurich, Switzerland.
881. **Functional MRI Validation of an Anatomical Technique for Localization of Hand Sensorimotor Cortex on MR Images.**
J. Seinfeld, S. Lemieux, O. Boyko, J. Gaughan and M. Munz.
Temple University School of Medicine, Philadelphia, PA, USA.

882. **Bilateral Activation of Human MT/MST during Hemifield Motion Stimulation.**
Ludwig-Maximilians University, Munich, Germany.

883. **Human Brain Regions Involved in Passive Visual Perception of Motion and Smooth Pursuit Eye Movements.**
H San Raffaele, Milan, Italy and Klinikum Grosshadern, Munich, Germany.

884. **Human Perception of Faces and Face Cartoons: an fMRI Study.**
J. Jovicich, R.J. Peters, C. Koch, L. Chang and T. Ernst.
Caltech, Pasadena, CA, USA and UCLA School of Medicine Harbor-UCLA Medical Center, Torrance, CA, USA.

885. **The Role of the Posterior Parietal Cortex in Human Object Recognition: A Functional Magnetic Resonance Imaging Study.**
MITI, Tsukuba, Japan; Kyoto University, Kyoto, Japan; Juntendo University, Tokyo, Japan and Stanford University, Stanford, CA, USA.

886. **A Comparison Between Two Types of Imagery Tasks: An fMRI Study.**
Kyoto University, Kyoto, Japan; MITI, Tsukuba, Japan and Toyohashi Sozo College, Toyohashi, Japan.

887. **The Effect of Subanesthetic Isoflurane on BOLD Signal Changes During a Visual Search Task.**
C. Schwarzbauer and W. Heinke.
Max-Planck-Institut für neuropsychologische Forschung and Universität Leipzig, Leipzig, Germany.

888. **Functional Discrimination of Thalamic Nuclei Using BOLD Contrast at 1.5T.**
Indiana University School of Medicine, Indianapolis, IN, USA.

889. **Temporal Dissociation of Two Visual-Input Networks Using fMRI.**
University of Minnesota, Minneapolis, MN, USA and Fukuider Cross Hospital, Fukuif, Japan.

890. **A Functional MRI Study of the Parietal Eye Fields.**
Long Beach Memorial MRI Center, Long Beach, CA, USA.

891. **Attentional Interactions Between Auditory and Visual Cortex.**
Research Centre, Jülich, Germany and Otto-von-Guericke University, Magdeburg, Germany.

892. **The Effect of Autonomic Arousal On Selective Attention.**
MCP Hahnemann University, Philadelphia, PA, USA.

893. **Activation Related to Endogenous Attentional Shift: A Functional MRI Study.**
Toyohashi Sozo College, Toyohashi, Japan; Juntendo University, Tokyo, Japan; MITI, Tsukuba, Japan and Stanford University, Stanford, CA, USA.
894. **The Auditory Attention System during Dual listening Task Performance.**

MITI, Tsukuba, Japan; Toyohashi Sozo College, Toyohashi, Japan; Kyoto University, Kyoto, Japan; Stanford University, Stanford, CA, USA and NIPS, Okazaki, Japan.

895. **Pattern of Cortical Activation in Language Tasks Depends on Semantic Categories: An fMRI Study.**

Ludwig-Maximilians-University, Munich, Germany.

896. **Functional MR Imaging of the Object-Naming Task.**

Indiana University School of Medicine, Indianapolis, IN, USA.

897. **Correspondence of Event-Related Potential Tomography and Functional Magnetic Resonance Imaging During Language Processing.**

D. Vitacco, D. Brandeis, R. Pascual-Marqui and E. Martin.
University Children’s Hospital and University of Zürich, Zürich, Switzerland.

898. **Picture-Word Matching as a Paradigm in Determining Regions of Language Processing: An fMRI Study.**

University Hospital, Zurich, Switzerland.

899. **Evidence of Right Hemisphere Engagement During the Production of Overt Emotional Prosody: An Event-Related fMRI Study.**

University of Florida, Gainesville, FL, USA.

900. **Possible Different Language Processing Strategy for Chinese Speakers.**

University of Texas Health Science Center, San Antonio, TX, USA and University of Hong Kong, Hong Kong.

901. **The Temporal Response of Left Frontal Lobe during Chinese and English Word Generation by Native Chinese Speakers: An Event-Related fMRI Study.**

University of Texas Health Science Center, San Antonio, TX, USA; University of Hong Kong, Hong Kong and University of Pittsburgh, Pittsburgh, PA, USA.

902. **Manipulo-Spatial Processing of the Ideographic Characters by Left-Handers - Functional Magnetic Resonance Imaging.**

MITI, Tsukuba, Japan; Toyohashi Sozo College, Toyohashi, Japan; Kyoto University, Kyoto, Japan and Stanford University, Stanford, CA, USA.

903. **Gender Differences in a Graded Visual Stimulation Paradigm for fMRI are Limited to Striate Visual Cortex.**

Max-Planck-Institute of Psychiatry, Munich, Germany.

904. **Real Time fMRI During the Formation of Novel Equivalence Relations.**

Liverpool University, Liverpool, UK.

905. **Cortical Activation During the Mental Rotation Task; A Functional Magnetic Resonance Imaging (fMRI) Analysis.**

University of Manchester, Manchester, UK and University of Wales, Bangor, Wales, UK.
906. **Single-Trial Analysis and Whole-Brain Coverage in Functional MRI of a Mental Rotation Paradigm.**
C. Windischberger, C. Lamm, H. Bauer and E. Moser.
University of Vienna, Vienna, Austria.

907. **N-Back Task, Audiospatial Working Memory and Functional Magnetic Resonance Imaging.**
Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland and Kuopio University Hospital, Kuopio, Finland.

908. **fMRI of Human Visual Episodic Memory.**
A.P. Wunderlich, M. Riepe, G. Groen, R. Tomczak and H-J. Brambs.
Ulm University Clinic, Ulm, Germany.

909. **Both Long- and Short-Term Topographical Memory Recall Produces Activity of the Medial Temporal Lobe: A Functional Magnetic Resonance Study.**
University of Sheffield, Sheffield, UK.

910. **Patterns of Neural Activation During a Simple Continuous Performance Task.**
St. Jude Children's Research Hospital, Memphis, TN, USA.

911. **Brain fMRI Signal Changes in Response to Intraduodenal Infusion of Sweet Amino Acids in Awake Rats.**
T. Kondoh, M. Smriga, T. Ono and K. Torii.
Ajinomoto Co., Inc., Kawasaki, Japan and Toyama Medical and Pharmaceutical University, Sugitani, Toyama, Japan.

912. **Skin Conductance Measurements During Functional MRI.**
A. Shastri, M. Lomarev, M.S. George and D.E. Bohning.
Medical University of South Carolina, Charleston, SC, USA.

913. **Pharmacological Modulation of the Central Pain Response.**
I. Tracey, G. Hicks, R. Rogers, S. Clare, C. Bountra, P. Barrington, D. Painter, A. Ploghaus, G. Peskett and P.M. Matthews.
Oxford University and John Radcliffe Hospital, Oxford, UK; Cambridge University, Cambridge, UK and Glaxo Wellcome Research and Development, Greenford, UK.

914. **Common Areas of BOLD Signal Changes in Medial Prefrontal Cortex during Tasks Involving Pain or Attention.**
U.N. Frankenstein, W. Richter and M.C. McIntyre.
National Research Council of Canada, University of Manitoba and University of Winnipeg, Winnipeg, Manitoba, Canada.

915. **Functional Magnetic Resonance Imaging of Noxious Heat Pain.**
Technische Universität, München, Germany.

916. **Randomized fMRI-Designs with Event-Related FLASH: a Technique for Monitoring Cerebral Pain Processing.**
Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany and Universität Mannheim, Mannheim, Germany.

917. **Selective Estrogen Receptor Modulator Effects on Brain Activation During Encoding.**
University Hospital, Vrije Universiteit, Amsterdam, The Netherlands.
918. **BOLD fMRI Evaluation of Normal Female Sexual Arousal Response: Sites of Cerebral Activation Correlated with Subjective and Objective Measures of Arousal.**

University of Washington, Seattle, WA, USA; Pfizer, Inc., Groton, CT, USA and Epix Medical, Boston, MA, USA.

919. **Corital Deactivation during Vestibular Galvanic Stimulation (fMRI).**

Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany.

920. **Does Acupuncture Produce a BOLD-Signal? New Findings With fMRI On Stimulation of Acupoint GB 37.**

University of Freiburg, Freiburg, Germany.

fMRI: Animal Models

Hall C

Thursday: 13:30 – 15:30

921. **Preliminary Results of Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging in Rat Brain During Sleep - Wakefulness.**

M. Khubchandani, H.N. Mallick, V.M. Kumar and N.R. Jagannathan.

All India Institute of Medical Sciences, New Delhi, India.

922. **Functional Magnetic Resonance Imaging Studies of the Rat Model of Parkinson's Disease.**

G. Pelled, H. Bergman and G. Goelman.

Hadassa Hebrew University Hospital and The Hebrew University, Jerusalem, Israel.

923. **fMRI of the Hypothalamus Following Glucose Administration in a Rat Model: Implications for Obesity and Diabetes Research.**

University of Texas Health Science Center, San Antonio, TX, USA.

924. **Are fMRI and Optical Imaging Measuring the Same Thing: In the Rat?**

University of Sheffield, Sheffield, UK.

925. **Spatial Neuronal Activity Patterns Elicited by Different Odors in Rat Olfactory Bulb Studied with Functional MRI.**

F. Xu, I. Kida, X. Yang, F. Hyder, C.A. Greer, G.M. Shepherd and R.G. Shulman.

Yale Medical School, New Haven, CT, USA.

926. **Effect of Hematocrit on BOLD Signal Changes.**

E.A. Stein, M.M. Maestas, A. Hudetz, K. Donahue, B. Ozel and A.S. Greene.

Medical College of Wisconsin, Milwaukee, WI, USA.

927. **fMRI of the Normal and Ischemic Rat Brain by Mapping Transient Changes in Cerebral Blood Volume.**

T. Reese, D. Bochelen, D. Baumann, A. Sauter and M. Rudin.

Novartis Pharma Ltd, Basel, Switzerland.
Poster Sessions

928. **Design and Importance of a Continuous Physiologic Monitoring for fMRI in Rats at 7T and First Results with the Novel Anesthetic Sevoflurane.**
 Max-Planck-Institute of Psychiatry and Technical University, Munich, Germany.

fMRI Acquisition Methods

Hall C
Monday: 14:00 – 16:00

929. **Real-Time Quantification of T2* Changes Using Multi-Echo fMRI.**
 G. Hagberg, I. Indovina, J.N. Sanes and S. Posse.
 Scientific Institute of Foundation Santa Lucia, Rome, Italy.

930. **Comparison of Different Single and Multi-Echo Methods for T2* Measurements in the Human Brain During Rest, Visual and Motor Stimulation.**
 M. Klarhöfer, M. Barth and E. Moser.
 University of Vienna, Vienna, Austria.

931. **SENSE Imaging Using a Transmission Line Volume Phased Array.**
 Harvard-MIT Division of Health Sciences and Technology and Massachusetts General Hospital, Boston, MA, USA and Nova Medical Inc., Cambridge, MA, USA.

932. **Improved Functional Localization Accuracy Using Inversion Recovery BOLD fMRI.**
 Mount Sinai School of Medicine, New York, NY, USA and University of California, Irvine, CA, USA.

933. **The Effect of Fat Saturation on Functional MRI Using EPI.**
 D.W. McRobbie and R.A. Quest.
 The Hammersmith Hospitals NHS Trust & Imperial College, Charing Cross Hospital, London, UK.

934. **Optimization of Block Design fMRI Experiments Using Different Strategies For Distributed Sampling.**
 V. Venkatraman, M.W.L. Chee and J.C. Rajapakse.
 Singapore General Hospital and Nanyang Technological University, Singapore.

935. **Initial Experience with fMRI in Humans at 7 Tesla.**
 University of Minnesota, Minneapolis, MN, USA.

936. **Ambiguous BOLD Topology in High Resolution Partial Fourier GR-EPI.**
 P.R. Harvey, A.M.C. van Muiswinkel, P.J.M. Folkers and J.S. van den Brink.
 Philips Medical Systems, Best, The Netherlands.

937. **Multi Gradient Echo Acquisition Techniques for fMRI: Advantages of Bi-Exponential Modeling.**
 O. Speck, T. Ernst and L. Chang.
 Harbor-UCLA Medical Center, Torrance, CA, USA.

938. **Spectral-Domain MRI Based on Multiple Asymmetric Spin-Echo EPI.**
 Northwestern University, Evanston, IL, USA.

939. **3D Techniques in BOLD fMRI: Comparison of PRESTO and Standard EPI.**
 V. Denolin, P. Van Ham and T. Metens.
 Université Libre de Bruxelles, Brussels, Belgium.
940. Multi-Resolution Detection of Functional Activation: Percentage Enhancement and CNR.
Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT, Division of Health Science and Technology, Boston, MA, USA.

P.W. Stroman and L.N. Ryner.
National Research Council Canada, Winnipeg, MB, Canada.

942. Investigation of Inflow Effects on fMRI at 3T.
C.J. Wiggins and D.G. Norris.
Max-Planck-Institut fuer neuropsychologische Forschung, Leipzig, Germany.

943. 3D Arterial Spin Tagging Studies of Cognitive Activation.
F.Q. Ye, T. Ellmore, K.F. Berman, J. Holt, K. St Lawrence, J. Duyn, J.A. Frank, D.R. Weinberger and A.C. McLaughlin.
National Institutes of Health, Bethesda, MD, USA.

944. 3D Measurement of Human Brain Function by Using 3D-One-Shot Dual-Frequency Amplitude-Modulated BURST Imaging.
Hitachi, Ltd., Kokubunji, Tokyo, Japan.

945. Keyhole fMRI of the Auditory Cortex Using Pore Tone Stimuli.
T. Kaulisch, A. Brechmann, D. Stiller and H. Scheich.
Leibniz Institute for Neurobiology, Magdeburg, Germany.

946. Assessing the Feasibility of Using LL-EPI and Gd-DTPA to Simultaneously Measure CBV and CBF.
University of Nottingham, Nottingham, UK.

Quantitative fMRI
Hall C
Monday: 14:00 – 16:00

947. Relation Between Cerebral Blood Flow and Metabolism Revisited by a Model of Oxygen Exchange.
R. Valabrègue, R. Costalat, J. Burger and J. Bittoun.
Université Paris 6 and Université Paris -Sud, Hôpital de Bicêtre, Paris, France and Université d’Angers, Angers, France.

948. On the Nonlinear Relation Between BOLD and CBF.
University of California, San Diego, CA, USA and National Institute of Mental Health, Bethesda, MD, USA.

949. Non-Linearity of Either the Neural-to-BOLD System or the Visual Stimulation-to-Neural System Demonstrated at 4.0 T.
University of Pennsylvania, Philadelphia PA, USA.

950. Perfusion and BOLD Functional MR at 1.5 T: Significance of Intravascular Contribution.
Osaka University Medical School, Osaka, Japan.
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>953.</td>
<td>1H MRS Study of BOLD Effects in Metabolites Reflecting Pure Extravascular Contribution from Microvasculature/Tissue in Human Visual Cortex at 4T.</td>
<td>W. Chen and X-H. Zhu.</td>
<td>University of Minnesota School of Medicine, Minneapolis, MN, USA.</td>
</tr>
<tr>
<td>954.</td>
<td>MR Measurements of Regional Arterial and Venous Blood Volume Fractions in Intact Rat Brain.</td>
<td>T.Q. Duong and S-G. Kim.</td>
<td>University of Minnesota School of Medicine, Minneapolis, MN, USA.</td>
</tr>
<tr>
<td>955.</td>
<td>Relationship Between CBF and Arterio-venous Relative CBV Changes During Hypercapnia in Rat Brain: 19F/1H NMR Studies.</td>
<td>S-P. Lee, T.Q. Duong, C. Iadecola and S-G. Kim.</td>
<td>University of Minnesota Medical School, Minneapolis, MN, USA.</td>
</tr>
</tbody>
</table>
963. Striatal fMRI Responsiveness to Dopaminergic Challenge: Dependence on Striatal Dopamine Receptor Levels.
University of Kentucky School of Medicine, Lexington, KY, USA.

964. Modulation of Glutamatergic Activation by GABA	extsubscript{A} Facilitator in Conscious Rabbits by fMRI.
ENH Research Institute, Evanston, IL, USA.

965. BOLD Signal Change After Acetazolamide In Relation To Change in Total Cerebral Blood Flow.
University Hospital, Hvidovre, Denmark.

966. Neuro-Glial Interactions During Insulin-Induced Hypoglycemia: A 3D-Localized 	extsuperscript{13}C NMR Study of in vivo Amino Acid Metabolism.
University of Minnesota, Minneapolis, MN, USA and Université de Lausanne, Lausanne, Switzerland.

967. Anesthetic Filters for Eliciting Specific Neurotransmitter Effects in Pharmacologic MRI.
Massachusetts General Hospital, Charlestown, MA, USA.

968. Localized Energetic Changes with Brain Activation from Anesthesia II: Relative-BOLD Changes at 7 Tesla.
Yale University, New Haven, CT, USA.

969. Xenon-Hemoglobin Interaction in Human Blood.
J. Wolber, A. Cherubini, M.O. Leach and A. Bifone.
The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK.

970. Linewidths of Hyperpolarized 	extsuperscript{129}Xe NMR Spectra in Human Blood at 1.5T.
J. Wolber, A. Cherubini, D. Santoro, G.S. Payne, M.O. Leach and A. Bifone.
The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK.

971. Interpretations of Brain "Deactivation" and "Activation" for Functional MRI.
Yale University, New Haven, CT, USA.

972. Mapping Functional Changes in CMRO	extsubscript{2} by Multi-Modal MRI at 7 Tesla.
Yale University, New Haven, CT, USA.

973. BOLD Signal Decreases During Pain Correspond With Decreases in Perfusion.
U.N. Frankenstein, P. Strongman and M. McIntyre.
National Research Council of Canada, University of Manitoba and University of Winnipeg, Winnipeg, Manitoba, Canada.

974. Mapping Spatial Distribution of H	extsubscript{2}	extsuperscript{17}O in Rat Brain by Two-Dimensional CSI With a Fourier-Series Window (FSW) Technique.
University of Minnesota, School of Medicine, Minneapolis, MN, USA.

University of Nottingham, Nottingham, UK.
976. **Intravascular Signal Loss from a Single Vessel: Applications to Venographic Imaging and fMRI.**
Y-C. N. Cheng, Y-J. Yu and E.M. Haacke.
The MRI Institute for Biomedical Research, Brentwood, MO, USA; Case Western Reserve University, Cleveland, OH, USA and Washington University, St. Louis, MO, USA.

fMRI: Spatial and Temporal Characteristics
Hall C
Tuesday: 13:30 – 15:30

977. **Physiological Modeling of BOLD Hemodynamics.**
A. Vazquez and D. Noll.
University of Michigan Ann Arbor, MI, USA.

978. **Mapping Human Ocular Dominance Columns with High-Field (4T) Functional Magnetic Resonance Imaging.**
RIKEN Brain Science Institute and Japan Science and Technology Corporation, Saitama, Japan.

979. **Spread of Hemo-Dynamic Signals in Draining Veins Beyond the Regions of Electrical Activation.**
A. Shmuel, X. Hu, K. Ugurbil and A. Grinvald.
The Weizmann Institute of Science, Rehovot, Israel and University of Minnesota, Minneapolis, MN, USA.

980. **Simultaneous CBF and BOLD fMRI of the Cat Visual Cortex: Comparison of Spatial Specificity at Sub-Millimeter Resolution.**
T.Q. Duong, D-S. Kim and S-G. Kim.
University of Minnesota School of Medicine, Minneapolis, MN, USA.

981. **Differences in Spatial Extent of Activation: BOLD vs. CBF (FAIR).**
M.L. Lipton, C.A. Branch, H. Hrabe, D.P. Lewis and J.A. Helpern.
Albert Einstein College of Medicine, Bronx, NY, USA; Nathan S. Kline Institute, Orangeburg, NY, USA and New York University School of Medicine, New York, NY, USA.

982. **A Model of Temporal and Spatial Variability of fMRI Activation Delays.**
Z.S. Saad, E.A. DeYoe and K.M. Ropella.
Marquette University and Medical College of Wisconsin, Milwaukee, WI USA.

983. **The Brain as a Black-Box?: ER-fMRI Latency Estimation of Interleaved Response to Short Visual, Auditory, and Motor Stimuli.**
V.D. Calhoun and G. Pearlson.
Johns Hopkins University and University of Maryland, Baltimore, MD, USA.

984. **Dependence of the fMRI Time Course of the Hemodynamic Response Function in Visual Cortex on Global Cerebral Blood Flow.**
S. Posse, B. Elghahwagi and L.J. Kemna.
Research Center Jülich GmbH, Jülich, Germany.

985. **Response of BOLD Signal in Human V1 Area with Varied Stimulus Duration: An Event-Related fMRI Study.**
Japan Science and Technology Corporation (JST) and Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
Japan Science and Technology Corporation (JST) and Akita Research Institute of Brain and Blood Vessels, Akita, Japan.

987. Assessment of Linearity of Perfusion and BOLD Response Functions in Event-Related Functional MRI.
Y. Yang, W. Engelen, H. Pan, S. Xu, E. Stern and D.A. Silbersweig.
Cornell University Medical College and Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

University of Minnesota Medical School, Minneapolis, MN, USA.

989. BOLD Overshoots at Task-Switching Points in Supplementary Motor Area.
University of California, San Diego, CA, USA.

990. Decoupling of the Hemodynamic Delay from the Task-Induced Delay in fMRI.
Medical College of Wisconsin, Milwaukee, WI, USA.

991. Observation of the Initial "Dip" in fMRI Signal in Human Visual Cortex at 7 Tesla.
University of Minnesota, Minneapolis, MN, USA.

992. Detection of the Early Decrease in fMRI in the Motor Area.
E. Yacoub and X. Hu.
University of Minnesota School of Medicine, Minneapolis, MN, USA.

993. A Model of the Negative Early Response BOLD Signal in Functional MRI.
S. Banakar and M. Singh.
University of Southern California, Los Angeles, CA, USA.

994. Field Dependence of the Early Negative and the Late Positive BOLD Response at 4.7T and 9.4T.
T.Q. Duong, D-S. Kim and S-G. Kim.
University of Minnesota, Minneapolis, MN, USA.

995. Probing Neural Events by fMRI at the Neural Time Scale of Milliseconds.
Bell Laboratories, Lucent Technologies, Murray Hill, NJ, USA and University of Minnesota, Minneapolis, MN, USA.

996. The Effect of Stimulus Presentation Rate on the Activity of Primary Somatosensory Cortex; an fMRI Study.
Osaka University Graduate School of Medicine, Osaka Japan.

997. Classification of fMRI Signal Changes at 3 Tesla.
M. Barth, M. Klarhöfer and E. Moser.
University Hospital of Vienna and University of Vienna, Vienna, Austria.

998. Stimulus-Dependence and Independence of the BOLD Response in Human V1 and MT.
RIKEN Brain Science Institute and Japan Science and Technology Corporation, Wako-shi, Japan.
999. Temporal Correlations in Low Frequency BOLD Fluctuations Reveal Functional Networks.
Indiana University School of Medicine, Indianapolis, IN, USA.

1000. The Effects of Respiration Patterns on EPI Time Courses.
University of Vienna, Vienna, Austria.

pCO₂, Perfusion, and Motion Effects on fMRI
Hall C
Thursday: 13:30 – 15:30

1001. Perfusion Imaging Using FLASH and Slice Selective Inversion: Effective Contrast to Noise in Functional MRI.
C. Preibisch and A. Haase.
Universität Würzburg, Würzburg, Germany.

CHU A. Michallon, Grenoble, France.

University of Toronto, Toronto, Ontario, Canada.

1004. Widespread Respiration-Correlated Signal Changes in BOLD fMRI of Resting Brain.
L.N. Ryner, R. Baumgartner, R. Somorjai and W. Richter.
National Research Council Canada, Winnipeg, Manitoba, Canada.

1005. False Activation on BOLD fMRI Caused by Low-Amplitude Motion Weakly Correlated to Stimulus.
Wake Forest University School of Medicine, Winston-Salem, NC, USA.

1006. Analysis of Physical Mechanisms of Respiration-Induced fMRI Signal Changes.
J. Bodurka, X. Zhao and S-J. Li.
Medical College of Wisconsin, Milwaukee, WI, USA and University School of Medical Sciences, Bydgoszcz, Poland.

Cells, Body Fluids and Others
Hall C
Wednesday: 13:30 – 15:30

1007. Magnetically-Oriented Bicelles as an in vitro Tool to Investigate the Residual Dipolar Coupling of Creatine and Phosphocreatine Protons in Skeletal Muscle.
S.J. De Vilder, M.J. Kruiskamp, R. Wechselberger, M. Czisch and K. Nicolay.
University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands.
1008. Human Blood Exhibits Gaussian Relaxation Behavior.
Washington University, St. Louis, MO, USA.

University of Texas Southwestern Medical Center, Dallas, TX, USA and University of Texas Dallas, Richardson, TX, USA.

1010. 13C NMR Analysis of Long Chain Fatty Acid Oxidation in the Rat Liver After a Fatty Meal: Comparison of Glutamate and β - Hydroxybutyrate Spectra.
University of Texas Southwestern Medical Center, Childrens Medical Center and Dallas VA Medical Center, Dallas, TX, USA.

University of Texas, Southwestern Medical Center, Dallas, TX, USA and University of Texas at Dallas, Richardson, TX, USA.

1012. Determination of the Compartment Size of the Visible NMR Lipid Signal in Iodoacetamide-Treated C6 Cells.
Universitat Autònoma, Barcelona, Spain and CHU de Grenoble, Grenoble, France.

1013. Impact of Exogenous Alanine on Osmoregulatory Response and Pyruvate Compartmentation in Glial Cells: Difference in Primary Astrocytes and Glioma Cells.
C. Zwingmann, C. Richter-Landsberg and D. Leibfritz.
Universität Bremen, Bremen, Germany and Universität Oldenburg, Oldenburg Germany.

P.E. Thelwall and K.M. Brindle.
University of Cambridge, Cambridge, UK.

University of Arizona, Tucson, AZ, USA.

1016. Alterations in Choline Compounds - A Marker for the Malignant Phenotype in Human Prostate Cancer Cells.
The Johns Hopkins University School of Medicine and Triad Technology Center, Baltimore, MD, USA and University of Pittsburgh, Pittsburgh, PA, USA.

1017. NMR Spectroscopic Studies on Mitochondrial Genome Depleted Cervical Carcinoma Cells.
The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

1018. Regulation of Glucose Transport and GLUTs Expression in the Course of Breast Cancer Differentiation.
D. Rivenzon-Segal, E. Rushkin and H. Degani.
Weizmann Institute of Science, Rehovot, Israel.
1019. Diffusion Weighted Proton MRS: Applications to Cancer Cell Metabolism and Oncologic Pharmacology.
Sheba Medical Center, Tel Hashomer, Israel; Hebrew University, Jerusalem, Israel; Complutense University, Madrid, Spain; Tufts University, Boston, MA, USA and Tel-Aviv Medical Center, Tel-Aviv, Israel.

1020. Cyclooxygenase Inhibition and its Role in the 1H NMR Phospholipid Profiles of Human Mammary Epithelial Cells.
The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

1021. Muscle Metabolites, Detected in Urine, Reflect Disease Activity in Juvenile Dermatomyositis (JDM).
JDM Disease Activity Collaborative Study Group.

1022. Halocarbon-Induced Damage Studied by 1H, 13C and 31P NMR of Liver Extracts.
M. Brauer.
University of Guelph, Guelph, Ontario, Canada.

1023. 1H NMR Studies of the Biochemical Effects of Gaseous Oxygen Persufflation in the Rat Liver at Hypothermia.
Hammersmith Hospital, and Royal Free & University College London Medical School, London, UK.

1024. The Effects of Moderate Hypothermia on Liver and Intestine Metabolism Following Intestinal Ischemia and Reperfusion: In Vitro 1H and 31P Magnetic Resonance Spectroscopy Study.
P. Vejchapipat, S.R. Williams, E. Proctor, L. Spitz and A. Pierro.
University College London Medical School, London, UK and University of Manchester, Manchester, UK.

Tumor Animal Models: MRI and MRS

Hall C
Wednesday: 13:30 – 15:30

1025. Diffusion Weighted MR Imaging Improves Prostate Tumor Detection in Transgenic Mice: A Comparison of T2 and Apparent Diffusion Coefficients in Normal Prostate and Tumor.
Washington University, St. Louis, MO, USA.

1026. HGF/SF-Induced Hemodynamic Activity in Breast Tumor Tissue: A New MRI Diagnostic and Prognostic Tool.
Sheba Medical Center, Tel-Hashomer, Israel; Tel Aviv University, Tel Aviv, Israel and fBIT LTD, Tel-Hashomer Israel.

1027. Validation of TmDOTP$^-$ as an In Vivo 23Na NMR Shift Reagent in 9L Gliosarcoma.
P.M. Winter, H. Poptani and N. Bansal.
University of Pennsylvania, Philadelphia, PA, USA.

1028. Characterisation of the Development of Hepatic Tumours in an Experimental Animal Model Using In Vivo Image-guided 1H-MRS.
L.M. Foley, R.A. Towner, P. Russell and D.M. Painter.
James Cook University, Townsville, Queensland, Australia and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
1029. 1H Magnetic Resonance Spectroscopic Imaging of Extracellular pH in an Intracerebral Glioma.
Instituto de Investigaciones Biomédicas, Madrid, Spain and Centre Hospitalier Universitaire, Grenoble, France.

1030. Evaluation of α and γ-folate isomers of Gd-DO3A-APA-folate in Folate-Receptor Positive KB Cells and Implanted Tumors: Unexpected Binding Affinity for the α-isomer.
Bracco Research USA, Princeton, NJ, USA.

University of Pennsylvania and Thomas Jefferson University, Philadelphia, PA, USA.

M.E. Bellemann, A. Schlicker, H. Sinn, G. Brix and P. Peschke.
University of Applied Sciences, Jena, Germany and German Cancer Research Center (dkfz), Heidelberg, Germany.

1033. 19F NMR As a Tool to Measure the Efficiency of Adenoviral CD Gene Transfer. *In Vitro* and *In Vivo* Monitoring of 5-FC to 5-FU Conversion.
University of Alabama, Birmingham, AL, USA.

1034. MRI Assessment of Chemoembolization of Liver Tumors in a Rabbit Model.
Johns Hopkins University School of Medicine, Baltimore, MD, USA.

1035. Phosphomonoester Levels in Drug Resistant and Drug Sensitive Human Breast Cancer Xenografts via Fully-Relaxed 31P MRS.
D.L. Morse, N. Raghunand, B. Baggett, R.J. Gillies and N.R. Aiken.
University of Arizona Cancer Center, Tucson, AZ, USA.

University of Leicester, Leicester, UK and University of Freiburg, Freiburg, Germany.

1037. 1H Metabolic Response of the CWR22 Prostate Tumor Xenograft Following 20 Gy Radiation Studied by BASSALE SI.
Memorial Sloan-Kettering Cancer Center and Columbia University, New York, NY, USA.

1038. Cyclophosphamide Treatment of RIF-1 Tumors: Early Detection of therapeutic Response by T_2 and $T_1$$\rho$ MRL.
University of Pennsylvania, Philadelphia, PA, USA.

1039. Regional Tumor Tissue pO_2 and Blood sO_2: Comparison of 19F MR EPI and Frequency Domain NIR Spectroscopy.
University of Texas Southwestern Medical Center, Dallas, TX, USA.

1040. Tumor Oximetry: Comparison of 19F MR EPI (FREDOM) and the Fiber-Optic OxyLite™.
University of Texas Southwestern Medical Center, Dallas, TX, USA and Oxford Optronix, Oxford, UK.
1041. 19F MRS Measurement of Tumour Pharmacokinetics of SR4554, a 2-Nitroimidazole Hypoxia Probe.
B.M. Seddon, R.J. Maxwell, D.J. Honess, R. Grimshaw, F. Raynaud and P. Workman.
Institute of Cancer Research, Sutton, Surrey, UK and Gray Laboratory Cancer Research Trust, Northwood, Middlesex, UK.

1042. On the Correlation of FLOOD/MGRE Imaging and Dynamic Contrast Agent Imaging With Dimeglumine Gadopentetate (Magnevist).
St George's Hospital, London, UK.

1043. 100% N₂ Breathing Causes Vascular Collapse in Some Subcutaneous Tumors.
St George’s Hospital Medical School, London, UK.

1044. Measurement of Spectrally Inhomogeneous BOLD Contrast Changes Using High Spectral and Spatial Resolution (HiSS) MRI.
H.A. Al-Hallaq, M.A. Zamora, A. Farrel and G.S. Karczmar.
University of Chicago, Chicago, IL, USA.

1045. Effects of Glucose on BOLD Contrast in Tumors During Normoxia and Hyperoxia.
G.S. Karczmar, H.A. Al-Hallaq and M.A. Zamora.
University of Chicago, Chicago, IL, USA.

1046. Relative Roles of O₂ and CO₂ in the Carbogen-Enhanced-Uptake of Ifosfamide into Tumours - an in Vivo ³¹P MRS Study.
St. George’s Hospital Medical School, London, UK.

1047. An MR Imaging and Spectroscopic Comparison In Vivo of Mouse Hepa-1 Wild-Type Tumors and Tumors Deficient in Hypoxia-Inducible-Factor-1β (HIF-1β).
St. George's Hospital Medical School, London, UK; AstraZeneca, Cheshire, UK and John Radcliffe Hospital, Oxford, UK.

1048. Comparison of T₁ and T₂* Enhancement in MNU Chemically-Induced Mammary Carcinomas After Administration of the Blood Pool Agent NC100150 Injection.
St George's Hospital Medical School, London, UK and Nycomed Imaging, Wayne, PA, USA.

M.H. Hjelstuen, O. Haraldseth, C. Davies, I.S. Gribbestad, A. Bjørnerud and C. Brekken.
SINTEF Unimed and The Norwegian University of Science and Technology, Trondheim, Norway and Nycomed Imaging AS, Oslo, Norway.

1050. Visualization of Subcutaneous Lymphatics by Contrast Enhanced MRI.
H. Dafni, B. Shechter and M. Neeman.
The Weizmann Institute of Science, Rehovot, Israel.

1051. Tracking the Interstitial Movement of a Macromolecular Contrast Agent.
The Johns Hopkins University School of Medicine, Baltimore, MD, USA and The Weizmann Institute of Science, Rehovot, Israel.

1052. The Reptation Mechanism in Tumor Imaging.
E.E. Uzgiris and A. Bogdanov, Jr.
General Electric Research & Development, Schenectady, NY, USA and Massachusetts General Hospital, Charlestown, MA, USA.
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution(s)</th>
</tr>
</thead>
</table>
| 1053. | Selective Thrombosis of Tumor Vessels for Cancer Therapy: The Induced Blood Coagulation and Lysis Measured by MRI.
| 1054. | MRI Macromolecular Contrast Agents as Indicators of Tumor Starvation.
 | K. Beravs, T. Ivanu’a, G. Ser’a, M. Čemažar, V. Jevtić and F. Demsar.
 | Institute Jožef Stefan, University of Ljubljana, Institute of Oncology and Medical Center, University of Ljubljana, Ljubljana, Slovenia. |
 | Royal Marsden NHS Trust, Sutton, UK and Mayday University Hospital, Surrey, UK. |
| 1056. | Use of Dynamic MRI to Assess Effect of Combretastatin A4 Phosphate (CA4P) on Tumour and Normal Tissue Blood Flow in Rats and Humans.
 | Mount Vernon Hospital and Gray Laboratory, Northwood, Middlesex, UK. |
 | Chonnam University Hospital, Kwang-Ju, Korea. |
| 1058. | Abnormal Retinal Angiogenesis is Strongly Associated with a Subnormal MRI Panretinal Oxygenation Response: Effect of 28% Supplemental Oxygen Treatment.
 | B.A. Berkowitz and W. Zhang.
 | Wayne State University School of Medicine, Detroit, MI, USA. |
| 1059. | Examination of vx2-Tumors Using a 2-Pool Model With Proton Exchange and Dynamic Gd-DTPA Enhanced MRI.
 | M.D. Noseworthy, X. Qi, J.A. Stainsby and G.A. Wright.
 | University of Toronto and Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada. |
| 1060. | WITHDRAWN. | | |
 | Y.R. Kim and K.M. Donahue.
 | Medical College of Wisconsin, Milwaukee, WI, USA. |
 | M-Y. Su and O. Nalcioglu.
 | University of California, Irvine, CA, USA. |
 | Z.M. Bhujwalla and D. Artemov.
 | Johns Hopkins University School of Medicine, Baltimore, MD, USA. |
| 1064. | CBF and CBV are Mismatched in Rat Model of Human Glioma.
 | Massachusetts General Hospital, Charlestown, MA, USA. |
| 1065. | Magnetic Resonance Imaging of Tumor Permeability and Blood Volume: Non-Invasive Markers for the Efficacy of PTK 787 on Tumor Vasculature.
 | Novartis Pharma AG, Basel, Switzerland. |
MR Spectroscopy of Brain: Animal Models

Hall C
Tuesday: 13:30 – 15:30

1066. Can Cross Relaxation Between Solid and Water Protons Account for T_2 Relaxation Times in Brain?
I.M. Vavasour and A.L. MacKay.
University of British Columbia Hospital, Vancouver, BC, Canada.

1067. Quantitative Analysis of Human and Macaque Brain Metabolites Using 3 Tesla System.
BF Research Institute, Osaka, Japan; Meiji University of Oriental Medicine and Kyoto Prefectural University of Medicine, Kyoto, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

I. Ronen, H. Merkle and S-G. Kim.
University of Minnesota, Minneapolis, MN, USA.

1069. Spatially Resolved 13C Turnover in Rat Brain at 7 Tesla with ICED PEPSI.
Yale University, New Haven, CT, USA and University of Groningen, Groningen, The Netherlands.

1070. Cerebral Metabolic Maps by 1H/13C NMR at 7 Tesla.
Yale University, New Haven, CT, USA.

1071. Proton Localized 2D Spectroscopy in the Rat Brain at 7T.
ICSN-CNRS, Gif sur Yvette, France and CHU Villemin, Paris, France.

1072. Detection of Mobile Lipids Following Cerebral Infarction by 1D and 2D Proton MR Spectroscopy in a Rat Brain Slice Model.
University of New Mexico School of Medicine and Albuquerque VA Medical Center, Albuquerque, NM, USA.

1073. Lactate and NAA Imaging - Predictors of Tissue Recovery After Thrombolytic Stroke Intervention. A Spectroscopic Imaging Study In Rat Brain.
C. Franke, G. Brinker, F. Pillekamp and M. Hoehn.
Max-Planck-Institute for Neurological Research, Cologne, Germany.

1074. Postmortem Stability of 1H MRS Metabolites in Rat Brain.
C.C. Cloak, L. Chang, T. Ernst and R.E. Poland.
Harbor-UCLA Medical Center, Torrance, CA, USA and Cedars-Sinai Medical Center, Los Angeles, CA, USA.

1075. Choline Metabolism and Betaine Synthesis in Rat Brain.
Weizmann Institute of Science, Rehovot, Israel.

1076. Brain Metabolite Levels Are Altered in a Rat Model of Autism: An In Vivo 1H MRS Study.
State University of New York, Stony Brook, NY, USA.
1077. Studies of Thiamine Deficient Rat Brains with in vivo and in vitro Proton NMR Spectroscopy.
Vanderbilt University Medical Center, Nashville, TN, USA.

S. Haber and A. Lapidot.
Weizmann Institute of Science, Rehovot, Israel.

1079. Effects of Acute and Chronic Nicotine on 1H MRS in the Anterior Cingulate.
Medical College of Wisconsin, Milwaukee, WI, USA and Pfizer Central Research, Groton, CT, USA.

1080. Behavioural Deficits Correlate with MRS Changes in Mice.
University of Oxford, Oxford, UK.

1081. Oral Cortisol and Psychosocial Stress Differently Alter Brain Metabolism in Tree Shrews.
T. Michaelis, G. de Biurrun, T. Watanabe, E. Fuchs and J. Frahm.
Biomedizinische NMR ForschungsGmbH and Deutsches Primatenzentrum, Göttingen, Germany.

1082. Effects of Antipsychotic Drugs on Metabolite Ratios in Rat Brain In Vivo.
University of Arkansas at Little Rock; Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, AR, USA.

1083. 19F NMR Study of Trifluoperazine Crossing Blood-Brain-Barrier Due to P-Glycoprotein Modulation.
P. Wang, A. Aszalos and J.A. Vick.
Howard University, Washington, DC, USA and Food and Drug Administration, Laurel, MD, USA.

1084. Metabolic Investigation of Neuronal Dysfunction Induced by 3-Nitropropionic Acid in Rats and Primates.
SHFJ, DRM, CEA, Orsay, France.

1085. Impact of Acute Reversible Hydrocephalus in Guinea Pigs: A Proton MRI/MRS Study.
Rudi Schulte Research Institute, Santa Barbara, CA, USA; Huntington Medical Research Institutes, Pasadena, CA, USA; Children’s Hospital of Los Angeles and University of Southern California, Los Angeles, CA, USA.

1086. The Sequential Proton MRS and Diffusion Studies of Kaolin-Induced Hydrocephalic Cat Brain.
Kyungpook National University Hospital, Taegu, Korea.

1087. Effects of Deep Hypothermic Circulatory Arrest on Brain Metabolism Monitored by In Vivo 1H and 31P Magnetic Resonance Spectroscopy in a Feline Model.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1088. Cerebral Glucose Metabolism in a Transgenic Animal Model of ALS as Detected by In Vivo 13C MRS.
Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA and University of Nottingham, Nottingham, UK.

1089. MRI/MRS of a Mouse Model for Canavan Disease.
The University of Texas Medical Branch, Galveston, TX, USA.
Poster Sessions

1090. *In Vivo* 1H MR Spectroscopic Analysis of Apoptosis in Hypoxic-Ischemic Newborn Rats.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1091. Decreased Cerebral N-Acetylaspartate Correlates with Reduced Brain Water Apparent Diffusion Coefficient During Delayed Energy Failure in the Newborn Piglet.
University College London, London, UK.

1092. Proton T$_2$ Relaxation Measurements of Cerebral Metabolites in a Newborn Piglet Hypoxia-Ischemia Model.
Wilhelmina Children's Hospital and University of Utrecht, Utrecht, the Netherlands.

1093. Investigation of Hypoxic Ischemic Injured Newborn Rat Brain by *In Vivo* 1H MR Spectroscopy.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1094. [3-13C]Lactate Metabolism in the Rat Brain: An Ex-Vivo Study.
Université Victor Segalen, Bordeaux, France.

1095. Fast 1C-Glucose Metabolite Mapping in Rat Brain Using 1H Echo Planar Spectroscopic Imaging Technique.
Shiga University of Medical Science, Shiga, Japan.

MR Imaging of Brain Tumors

Hall C
Tuesday: 13:30 – 15:30

1096. Glioma Grading With Dynamic MRI.
Charité, Berlin, Germany.

1097. Fast T$_1$rho=NMR Imaging and Relaxometry of Brain Tumors in Patients at 1.5 T.
S. Sammet, M. Bock, H-P. Schlemmer and P. Bachert.
Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Germany.

1098. Oxygen Induced MR Signal Changes in Brain Tumor Imaging.
C. Losert, M. Peller, P. Schneider and M.F. Reiser.
Ludwig Maximilian University, Munich, Germany.

1099. Evaluation of Hemodynamics of Meningioma by Dynamic MRI.
Washokai Sadamoto Hospital and Ehime University, Ehime, Japan and GE-Yokogawa Medical System, Tokyo, Japan.

1100. The Correlation of Relative Magnetization Transfer Contrast and Relative Diffusion Weighted Contrast with Malignant Activity of Primary Brain Tumors as Assessed by Dynamic MRI.
Hadassah University Hospital, Jerusalem, Israel.
Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Samsung Medical Center, Sungkyungkwan University School of Medicine, Seoul, Korea.

1103. Intravenous Gadolinium Does Not Alter the Apparent Diffusion Coefficient: A Study in Enhancing Brain Tumors.
C. Morriss and J. Haselgrove.
Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.

1104. Can MRI and CT Together with the Clinical Data Reliably Predict the Malignancy of Brain Gliomas? A Study of 229 Biopsy-Proven Cases.
J. Vymazal, T. Chytka, J. Novotný Jr. and R. Liščák
Hospital Na Homolce, Prague, The Czech Republic.

1105. Magnetization Transfer MR Imaging is More Close to Histopathology than Conventional MR Imaging in Intercranial Tuberculomas.
Sanjay Gandhi Post-Graduate Institute of Medical Sciences and KG Medical College, Lucknow, Kanpur, India and Indian Institute of Technology, Kanpur, India.

MR Spectroscopy of Brain Tumors
Hall C
Tuesday: 13:30 – 15:30

1106. Effect of MRS on Clinical Decision Making in Brain Tumor Management.
A. Lin, A. Mamelak and B.D. Ross.
Huntington Medical Research Institute and Huntington Memorial Hospital, Pasadena, CA, USA.

1107. The Effect of Gd-DTPA on T1 Weighted Choline Signal In Human Brain Tumours.
P.S. Murphy, A. Dziłk-Jurasz, M.O. Leach and I. Rowland.
The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK.

1108. 1H MRSI, rCBV, and ADC in Human Brain Tumors: A Correlation with Image-Guided Biopsies.
University of California, San Francisco, CA, USA.

1109. Multi-Slice Proton Spectroscopic Imaging of Cerebral Gliomas in Untreated Patients.
Henry Ford Health System, Detroit, MI, USA.

1110. Regional Discrepancy of Apparent Diffusion Coefficient in Cerebral Gliomas: Correlation with Tumor rCBV and CSI.
W-C. Wu, M-L. Wu, C-W. Ko, C-Y. Chen and H-W. Chung.
National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

Sanjay Gandhi Post-Graduate Institute of Medical Sciences, KG Medical College and CDRI, Lucknow, India.
1112. Assessment and Comparison of 1H-MRSI Metabolite Ratios within the T$_2$-Hyperintensity of Patients with Recurrent Gliomas of Different Grades and Cell Types.
University of California, San Francisco, CA, USA.

1113. Preoperative Differentiation of Benign from Malignant Cerebral Glioma Using Perfusion EPI and CSI: Preliminary Results.
C-W. Ko, W-C. Wu, M-L. Wu, C-Y. Chen and H-W. Chung.
National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

1114. Three-Dimensional Diffusion, Perfusion and H1-Spectroscopy Measures in Gliomas.
University of California, San Francisco, CA, USA.

1115. Tumor Choline-to-Creatine MRS Signal Ratio is a Statistical Survival Predictor in Glioblastoma Multiforme Following Radiation Therapy.
University of California, Los Angeles, CA, USA.

1116. Assessment of Tumor Response to Chemotherapy by Longitudinal Multislice 1H MRSI, MRI and Clinical Examinations.
Columbia University, New York, NY, USA.

1117. An Early Increase in Choline in Proton Spectroscopic Imaging May Precede a Favorable Chemotherapy Effect in Glioma Patients.
Helsinki University Central Hospital, Helsinki, Finland.

University of California, San Francisco, CA, USA.

R. Jayasundar.
All India Institute of Medical Sciences, New Delhi, India.
MR Imaging of the Head and Neck

Poster Sessions

Hall C

Tuesday: 13:30 – 15:30

Hamamatsu University School of Medicine, Hamamatsu, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

1121. MRI of Tongue Movements during Stimulation of the Hypoglossal Nerve and its Branches.
University of Arizona, Tucson, AZ, USA.

1122. Effects of Carbogen Breathing on Tissue Oxygenation and Perfusion in Head and Neck Tumors as Measured by MRI.
M. Rijpkema, J. Kaanders, F. Joosten, B. van der Sanden, A. van der Kogel and A. Heerschap.
University Hospital, Nijmegen, The Netherlands.

M. Nakatsu, Y. Miki, N. Kazawa, S. Kubo and J. Konishi.
Kyoto University Hospital, Kyoto, Japan.

University of Technology (RWTH), Aachen, Germany.

Nagoya University School of Medicine, Nagoya, Japan and Toshiba Nasu Works, Tochigi, Japan.

1126. Differentiation of the Fluid Compartments of the Cochlea in vivo Using Magnetic Resonance Imaging at 1.5 T.
UCLA School of Medicine, Los Angeles, CA, USA.

H San Raffaele, Milan, Italy.

Kanazawa Medical University, Ishikawa, Japan.

E.A. Vokurka, N.A. Watson, Y. Watson, A. Jackson and N.A. Thacker.
University of Manchester, Manchester, UK.
MR Spectroscopy of Brain

Hall C

Wednesday: 13:30 – 15:30

1130. Assessing the Age-Dependent Profile in the Frontal and Centrum Semiovale Regions of Healthy Normal Controls Using *In Vivo* 31P MRS.
 University of Pittsburgh, Pittsburgh, PA, USA.

1131. Metabolite Content in Cerebral Grey and White Matter Studied with Short-Echo Time 1H-MRSI.
 National Society for Epilepsy Bucks, Chalfont St. Peter, UK and University College London, London, UK.

1132. Cerebral Metabolite Changes Across the Menstrual Cycle in Women with PMDD and Controls. A Preliminary Report.
 University of California, Los Angeles, CA, USA.

1133. 1H Chemical Shift Imaging Demonstration of Coherent Change in Brain Metabolism in Healthy Elderly Women Reexamined After Four Years.
 University Hospital Rotterdam and Erasmus University Medical School, Rotterdam, The Netherlands.

1134. Observation of Label Accumulation at Glutamate/Flutamine $C_{1,2,3,4}$ and HCO_3^- in Human Brain After Intravenous 1H-13C Labeled Glucose Infusion.
 Huntington Medical Research Institutes, Pasadena, CA, USA and Rudi Schulte Research Institutes, Santa Barbara, CA, USA.

1135. Detection of 4-Phenylbutyrate in the Human Brain by In Vivo Proton MR Spectroscopy.
 Johns Hopkins University and Kennedy-Krieger Institute, Baltimore, MD, USA.

 University of Washington School of Medicine, Seattle, WA, USA; University of New Mexico, Albuquerque, NM, USA and Center for MR Research, Jülich, Germany.

1137. Increased Brain Choline Level Observed After Choline Bitartrate Ingestion.
 McLean Hospital, Harvard Medical School, Belmont, MA, USA.

1138. 1H MRS, MRI and Neuropsychological Testing of Patients with Traumatic Brain Injury at Long Elapsed Time since Injury.
 University of British Columbia, Vancouver Hospital and Health Sciences Centre, Vancouver, British Columbia, Canada.

1139. Altered Metabolite Profile In Normal Appearing Brain Following Traumatic Brain Injury: A Phosphorus MRS Study.
 University of Oxford and Oxford Radcliffe Hospitals, Oxford, UK.
1140. Evaluation of the Traumatic Brain Injured Patients in Correlation with Functional Status in Rehabilitation Medicine by Localized 1H MR Spectroscopy.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1141. Changes in the 1H MR Spectra of Epileptogenic Lesions Treated with the Leksell Gamma Knife (LGK). Results from a Three Year Period.
M. Hájek, M. Dezortová, R. Liščák, J. Vymazal and V. Vladyka.
Homolka Hospital, Prague, Czech Republic.

1142. 1H-MRS and Diffusion-Weighted Imaging Correlated to Behavioral Studies in Huntington's Disease.
UNAM, Queretaro, Mexico; ABC Hospital and INNN, SSA, Mexico City, Mexico.

1143. Hippocampal 1H-MRSI in Ecstacy Users.
Central Institute of Mental Health, Mannheim, Germany.

1144. Intracranial Tuberculomas: Atypical MRI and MRS Findings.
Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India.

1145. Utility of Single Voxel MR Spectroscopy of Cerebral Lesions in AIDS.
P. Corr, A. Moodley, V. Patel and A. Bhigee.
Wentworth Hospital & University of Natal, Durban, South Africa.

1146. Proton MRSI in HIV+ Patients; Effect of Highly Active Anti-Retroviral Therapy.
Johns Hopkins University, Baltimore, MD, USA.

1147. High Resolution 1H NMR Analysis of Cerebrospinal Fluid: Applications to Diseases Affecting the Brain.
University College London Medical School, London, UK; Ecole Polytechnique, Paris, France and University College London, London, UK.

MR Spectroscopy of Epilepsy
Hall C
Wednesday: 13:30 – 15:30

1148. In Vivo Drug Monitoring of Anticonvulsants in The Human Brain Using Proton MRS.
J. Braun, S. Seyfert, J. Bernarding, K-J. Wolf and T. Tolxdorff.
University Hospital Benjamin Franklin, Free University of Berlin, Berlin, Germany.

1149. Cerebral GABA in Childhood Generalized Epilepsy.
Yale University School of Medicine, New Haven, CT, USA.

1150. Proton Spectroscopic Imaging in Frontoparietal Epilepsy Detects Pathology with Spatial and Metabolic Variation.
Hospital of Children and Adolescents and Helsinki University Central Hospital, Helsinki, Finland.
Poster Sessions

1151. MRI, 1H-MRS and fMRI Findings in a Patient During and After Prolonged Non-Convulsive Seizure.
University Hospital of Geneva, Geneva, Switzerland.

Brookhaven National Laboratory, Upton, NY, USA and Yale University, New Haven, CT, USA.

1153. Comparison of Volumetry and Proton MRS in Hippocampi of Children with History of Febrile Convulsion and/or Temporal Lobe Epilepsy.
W-C. Wu, M-L. Wu, C-Y. Chen and H-W. Chung.
National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

1154. Lateralization Ability of Single Voxel H-1 MR Spectroscopy in Hippocampal Sclerosis: Comparison with MRI and PET.
Seoul National University College of Medicine, Seoul, Korea.

MR Spectroscopy of Stroke
Hall C
Wednesday: 13:30 – 15:30

M. Labelle and Y. Boulanger.
Hôpital Saint-Luc du CHUM, Montréal, Québec, Canada.

Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1157. Cerebral Metabolic Improvement in Patients With Hemispheric Ischemia and an Occlusion of the ICA.
University Medical Center, Utrecht, The Netherlands.

1158. Tissue Viability by Sodium MRI in Critical Care Stroke Patients with Potential for Malignant Middle Cerebral Artery Syndrome.
University of Pittsburgh, Pittsburgh, PA, USA.

MR Spectroscopy of Brain Disorders
Hall C
Monday: 14:00 – 16:00

1159. Metabolic Alternations in Patients with Levodopa-Treated Parkinson's Disease by In Vivo 1H MRS.
Catholic University Medical College, Seoul, Korea.
1160. Metabolic Changes in Parkinson's Disease After Stereotactic Functional Neurosurgery by Follow-Up 1H MRS.
Catholic University Medical College, Seoul, Korea.

1161. Short-TE 1H MRS of the Substantia Nigra and Quantitative MRI in Idiopathic Parkinson's Disease.
DVA Medical Center and University of California, San Francisco, CA, USA.

1162. Metabolic Concentration of Temporal Lobe in Patients with Alcoholic Dementia by in vivo Proton MRS.
South Japan Health Science Centre, Fujimoto Hospital, Miyakonojo, Japan.

1163. Effect of Abstinence from Alcohol on the "Broad" Phospholipid Signal in 31P ISIS Spectra.
DVA Medical Center, University of California, San Francisco, CA, USA.

1164. Effects of Chronic Alcohol Use on "Broad" Phospholipid Signal Component in Brain Using 31P MRSI.
DVA Medical Center, University of California, San Francisco, CA, USA.

1165. 1H MRS in the Brain of Light and Heavy Drinkers: Alcohol and Neurons.
H. Goldman, M. Tolou-Shams, G. Salas, G. Fein and D.J. Meyerhoff.
DVA Medical Center, University of California, San Francisco, CA, USA.

1166. Effects on the Human Cerebral Metabolism by Aortic Dissection Surgery Performed Under Deep Hypothermic Circulatory Arrest by Localized 1H MR Spectroscopy.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1167. Recovery of Brain Choline Level in Treated Cushing's Patients as Monitored by Proton Magnetic Resonance Spectroscopy.
A. Khiat, C. Bard, A. Lacroix and Y. Boulanger.
CHUM, Montréal, Québec, Canada.

Universita' di Bologna, Bologna, Italy.

1169. Cerebral Metabolic Abnormalities and Cognitive Function Impairment in Chronic Obstructive Pulmonary Disease Detected by Localized 1H MR Spectroscopy.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

Johns Hopkins University, Baltimore, MD, USA.

1171. Cerebral Metabolic Abnormalities in Children with Hydrocephalus by Localized 1H MR Spectroscopy.
Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.
1172. **Differential Effects of Clozapine and Haloperidol on Motor Functioning, Parkinsonism, and Frontal Brain Chemistry in Schizophrenia: A Proton MR Spectroscopy Study.**
Clinical & Magnetic Resonance Research Center, Albuquerque, NM, USA.

1173. **Detection of Presymtomatic Huntington's Disease By Short Echo Elliptical Excitation CSI at 0.5 Tesla.**
R. Prost, N. Reynolds, L. Mark and S. Li.
Medical College of Wisconsin, Milwaukee, WI, USA.

1174. **Double Blind Trial of 1H MRS Monitoring Antiretroviral Therapy.**
Huntington Medical Research Institutes, Pasadena, CA, USA; Rudi-Schulte Research Institute, Santa Barbara, CA, USA and Huntington Memorial Hospital, Pasadena, CA, USA.

1175. **Complete Absence of Creatine in the Adult Brain.**
T. Thiel, R.A. Sälke-Kellermann, J. Hennig and E. Martin.
University of Freiburg, Freiburg, Germany and University Children's Hospital, Zurich, Switzerland.

1176. **Effect of Change in Diffusion of Water and Metabolites on Pathological Status in the Human Brain Measured by Pulse-gating Diffusion Proton MRS.**
University of Tokushima, Tokushima, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

MR Imaging of Brain – White Matter

Hall C
Wednesday: 13:30 – 15:30

1177. **Fractional Anisotropy Revisited: The Impact of Intrinsic Regional Differences in Diffusion Anisotropy on the Assessment of MS Lesions.**
Karl-Franzens University, Graz, Austria and Ludwig-Maximilians University, Würzburg, Germany.

1178. **Magnetization Transfer Ratios in Inflammatory Brain Disease.**
The John P. Robarts Research Institute, London, Ontario, Canada.

1179. **Neuropsychological Impairment in Multiple Sclerosis Correlates with T$_1$ Hypointense Lesions Demonstrated on 3D-High Resolution T$_1$, Weighted MRI.**
D.M. Moriarty, A. Blackshaw, P.R. Talbot, H.L. Griffiths, J.S. Snowden, V.F. Hillier and A. Jackson.
University of Manchester, Manchester, UK.

1180. **Systematic Comparison of Atrophy Between Relapsing-Remitting and Secondary-Progressive MS.**
Vrije Universiteit Academic Hospital, Amsterdam, The Netherlands.

1181. **Stability and Consistency of Automatic Registration of Serial MR Studies in MS.**
Philips Medical System, Best, the Netherlands and Vrije Universiteit, Amsterdam, the Netherlands.
1182. **Histogram Analysis of ADC, Fractional Anisotrophy, and Magnetization Transfer Within Normal Appearing White Matter in Multiple Sclerosis Patients: Comparison to Normal Controls and Correlations to Clinical Disability.**
Stanford University, Stanford, CA, USA.

1183. **Differences in T1 Distributions Between Normal Volunteers and MS Patients Identified by Bayesian Decomposition Relaxographic Imaging.**
Fox Chase Cancer Center, Philadelphia, PA, USA; Brookhaven National Laboratory, Upton NY, USA and State University of New York, Stony Brook, NY, USA.

1184. **Are MTR or T2 Histograms More Sensitive for MS Detection?**
Université catholique de Louvain, Brussels, Belgium; Pennsylvania State University, Hershey, PA, USA and GE Medical Systems, Milwaukee, WI, USA.

1185. **Quantitative Magnetization Transfer Imaging in Relapsing Multiple Sclerosis.**
Karl-Franzens University, Graz, Austria and Julius-Maximilian University, Würzburg, Germany.

1186. **Brain Atrophy Parameters in Multiple Sclerosis: Relation to Disability.**
Free University Hospital, Amsterdam, The Netherlands.

1187. **Improved Interobserver Agreement for Visual Detection of Active T2 Lesion on Serial MR Scan in MS, Using Image Registration Based on a Mutual Information Algorithm.**
Vrije Universiteit Academic Hospital, Amsterdam, the Netherlands; Karl-Franz University, Graz, Austria; San Raffaele Hospital, Milan, Italy; Kantonsspittal, Basel, Switzerland; Institute of Neurology, London, UK; Klinikum Grosshadern, Munich, Germany and Philips Medical Systems, Best, Netherlands.

1188. **Variability of Brain Atrophy Estimates in Multiple Sclerosis.**
Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

1189. **Tissue Characterization in Relapsing-Remitting and Secondary-Progressive MS Via Magnetization Transfer Ratio.**
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

1190. **The Effect of Demyelination on T1, T2 Relaxation and Magnetization Transfer in White Matter.**
University of Toronto and Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada.

1191. **Magnetization Transfer Imaging to Monitor Disease Evolution in Multiple Sclerosis.**
M. Rovaris, M. Inglese, G. Iannucci, G. Comi and M. Filippi.
H. San Raffaele, Milan, Italy.

1192. **A Weekly Magnetization Transfer and Diffusion Weighted Imaging Study of Multiple Sclerosis Lesions and NAWM.**
Scientific Institute H. San Raffaele, University of Milan, Milan, Italy.

1193. **Detection of Brain Volume Changes in Multiple Sclerosis: Sensitivity and Reproducibility of Different Methodologies.**
M. Rovaris, M. Inglese, M.P. Sormani, G. Santuccio, G. Comi and M. Filippi.
H. San Raffaele, Milan, Italy.
1194. Regional Diffusion Tensor and Magnetization Transfer Measurements within Normal Appearing White Matter in Multiple Sclerosis Patients: Comparison to Normal Controls and Correlations to Clinical Disability.
 Stanford University, Stanford, CA, USA

1195. Anatomic Distribution of MS Lesions in the Posterior Fossa.
 Scientific Institute H San Raffaele, Milan, Italy and Klinikum Grosshadern, Munich, Germany.

1196. The Prognostic Value of MRI and MTI Findings at Presentation in Patients with Clinically Isolated Syndromes Suggestive of MS.
 Scientific Institute H San Raffaele, University of Milan, Milan, Italy.

1197. A Study of the Relationship Between Magnetisation Transfer Ratio and T_1 Relaxation Time in Multiple Sclerosis Lesions and Normal Appearing White Matter.
 Institute of Neurology, London, UK.

1198. Magnetization Transfer Analysis of White Matter in Asymptomatic Insulin-Dependent Diabetes Mellitus.
 M. Zhang, N. Erdag, A.M. Jacobson and J.N. Suojanen.
 Beth Israel Deaconess Medical Center & Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

 National Institutes of Health, Bethesda MD, USA and Children's National Medical Center, Washington DC., USA.

 New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, NY, USA.

 S-W. Sun, S-K. Song, W-C. Chu and C. Chang.
 Academia Sinica and National Yang-Ming University, Taipei, Taiwan, ROC and Washington University, St. Louis, MO, USA.

1202. Imaging the Corticospinal Tract by Diffusion Weighted Magnetic Resonance Imaging in Patients with Brain Tumors.
 Tohoku University School of Medicine and Kohinan Hospital, Sendai, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

MR Imaging of Brain – Vascular
Hall C
Thursday: 13:30 – 15:30

1203. Serial Measurements of the Apparent Diffusion Coefficient in Human Stroke on Five Time Points over Three Months.
 Kuopio University Hospital and University of Kuopio, Kuopio, Finland and Helsinki University Central Hospital, Helsinki, Finland.
1204. Diffusion-Weighted MRI in the Acute Stage of Transient Ischemic Attacks.
Kohnan Hospital and Tohoku University School of Medicine, Sendai, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

1205. Successful Reperfusion in Human Stroke after Extended Periods of Ischemia: Patient Selection and Treatment Monitoring Using Diffusion/Pefusion MRI.
P.B. Barker, A.E. Hillis and R.J. Wityk.
Johns Hopkins University, Baltimore, MD, USA.

1206. Intralmsional Heterogeneity of the Time Course of the Apparent Diffusion Coefficient In Patients With Large Territorial Cerebral Infarction.
A. Gass, S. Behrens, J. Hirsch, O. Sedlaczek, M.G. Hennerici and J. Gaa.
Klinikum Mannheim, University of Heidelberg, Mannheim, Germany.

Johannes Gutenberg-University, Mainz, Germany and Institute of Neurology, London, UK.

1208. Visualisation of Hemodynamic Compromise - Comparison of Patients with Acute MCA Stroke and High Grade Carotid Artery Stenosis.
A. Gass, S. Behrens, J. Hirsch, O. Sedlaczek, J. Gaa and M.G. Hennerici.
Klinikum Mannheim, University of Heidelberg, Mannheim, Germany.

1209. Diffusion-weighted MRI in the Follow-up of Intra-arterial Thrombolysis in Human Arterial Stroke.
Inselspital, University of Bern, Bern, Switzerland.

1210. Detection of Hemorrhagic Transformation of Embolic Stroke With and Without rt-PA Intervention Using MRI in Rat.
Henry Ford Hospital, Detroit, MI, USA and Oakland University, Rochester, MI, USA.

1211. Scattered Infarct Pattern on Diffusion-Weighted Magnetic Resonance Imaging in Acute Ischemic Stroke.
Medical Center Benjamin Franklin, Free University of Berlin, Berlin, Germany.

1212. Diffusion And Perfusion Based Predictive Model To Estimate Stroke Evolution: Program to Aid the Validation of Potential Drug Therapies.
University of Queensland and Princess Alexandra Hospital, Brisbane, Australia; Maudsley Hospital, London, UK and SmithKline Beecham Pharmaceuticals, UK.

1213. Clinical Application of Quantitative Continuous Arterial Spin Labeling (CASL) Imaging to Patients with Acute and Sub-Acute Stroke.
Fukui Medical University, Fukui, Japan.

1214. Cerebral Infarction: Time Course of Gadopentetate Enhancement on T1WI and Its Relation to Cerebral Reperfusion.
I-J. Huang, Y-J. Liu, F-N. Wang, C-Y. Chen and H-W. Chung.
National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

Gyeongsang National University, Chinju, South Korea.
1216. **Assessment of Borderzone Vasodilatory Response Before and After Carotid Endarterectomy.**
CREATIS, UFR Laënnec, University Claude Bernard and Cerebro-vascular Disease and Ataxia Research Center, Lyon, France.

1217. **Cerebral Hemodynamic Parameters, Assessed with MRA Quantitative Flow and \(^1\)H MRS, in TMB Patients, TIA Patients and Control Subjects.**
University Medical Center, Utrecht, The Netherlands.

1218. **Adaptation of the Circle of Willis after Carotid Endarterectomy.**
J. van der Grond, D.R. Rutgers, R. Kuit and B. Hillen.
University Medical Center, Utrecht, the Netherlands.

1219. **Metabolic Alterations in Patients with ICA Obstructions Correlate with the Clinical Etiology Rather than with Cerebropetal Flow.**
University Medical Center, Utrecht, the Netherlands.

1220. **The Assessment of Tissue Status After Surgical Revascularisation in Children with Moyamoya Disease Using MR Diffusion and Perfusion Imaging.**
F. Calamante, F.J. Kirkham, M. Bynevelt, D.G. Gadian and A. Connelly.
University College London Medical School and Great Ormond St. Hospital for Children, London, UK.

1221. **Investigation of Cerebral Blood Flow Before and After Embolisation in Patients with Arteriovenous Malformation.**
Johannes Gutenberg-University, Mainz, Germany.

1222. **Detection of Abnormalities Using Magnetization Transfer Ratios in Normal-Appearing White Matter on Conventional MR Images in Patients with Occlusive Cerebro-Vascular Disease: Comparison with Positron Emmission Tomography Data.**
Fukui Medical University, Fukui, Japan.

1223. **Cerebral Perfusion Abnormalities in Abstinent Cocaine Abusers: A Perfusion MRI and SPECT Study.**
T. Ernst, L. Chang, G. Orpilla, A. Gustavson and O. Speck.
Harbor-UCLA Medical Center, Torrance, CA, USA.

1224. **A Magnetization Transfer Imaging Study of Individuals with CADASIL.**
H San Raffaele, Milan, Italy and Klinikum Grosshadern, University, Munich, Germany.

1225. **Diffusion-Weighted MRI in Human Cerebral Venous Thrombosis.**
Inselspital, University of Bern, Bern, Switzerland.
Poster Sessions

Carotid and Brain MR Angiography
Hall C
Wednesday: 13:30 – 15:30

1226. Initial Results from a Multi-Center Carotid Imaging Trial: Contrast-Enhanced MRA vs. X-ray DSA.
University of Wisconsin, Madison, WI, USA.

1227. High Resolution Contrast-Enhanced MRA of Carotid Arteries Using a Head/Neck Array Combined
Coil on A 1.5T Cardiovascular MR Scanner.
St. Luke's Medical Center and GE Medical Systems, Milwaukee, WI, USA.

1228. 2D Projection MRA of Aortic Arch with Single Dose Gadolinium.
New York Presbyterian Hospital, Weill Medical College of Cornell University, New York, NY, USA.

1229. Comparing First-Pass Gd-Enhanced & TOF MRA with Conventional Catheter Angiography and
Ultrasound in the Evaluation of Carotid Stenosis.
University of Sheffield and Royal Hallamshire Hospital, Sheffield, UK.

1230. What is the Cause of Signal Inhomogeneity at the Carotid Bifurcation? In-vivo and In-vitro study.
Yonsei University College of Medicine, Seoul, Korea.

1231. Influence of Patient and Imaging Factors on Spatial Resolution of High Resolution 3D Gd-MRA of the
Carotid Arteries.
Sunnybrook & Women’s College Health Science Centre and University of Toronto, Toronto, ON, Canada and Stanford
University, Stanford, CA, USA.

1232. Investigation of Saturation Phenomenon for Intracranial 3D Magnetization Transfer TOF MRA on
Volunteers with Metal.
N. Ohnari, N. Ichinose, M. Miyazaki, K. Kumamoto and H. Nakata.
University of Occupational and Environmental Health School of Medicine, Fukuoka, Japan; Toshiba Medical Systems
Division, Tochigi, Japan and Toshiba Medical Systems Co., Ltd., Fukuoka, Japan.

1233. Flow Quantification in High-Flow Extra-Intracranial or Intra-Intracranial Bypass with
MR-Angiography.
University Medical Center, Utrecht, The Netherlands.

1234. High Resolution Contrast Enhanced MR Angiography for Screening Cerebral Aneurysms
Comparison with Conventional TOF-MRA.
Yonesei University School of Medicine, Seoul, Korea and Siemens, Erlangen, Germany.

1235. Assessing the Adequacy of MRA for Planning Intacranial Aneurysm Clipping Surgery.
University of Utah, Salt Lake City, UT, USA.

1236. Nidus Volume Measurements in Patients with Arteriovenous Malformations: Comparison of Three
MR Scanning Techniques with DSA.
National Hospital for Neurology & Neurosurgery, London, UK.
1237. The Spetzler Grading of Cerebral Arteriovenous Malformations on MR DSA Compared to Conventional Catheter Angiography.
University of Sheffield, Sheffield, UK.

1238. Does Contrast Enhancement Improve the Assessment of Cerebral Arteriovenous Malformations when Using SLINKY MRA?
University of Sheffield, Sheffield, UK.

Nippon Medical School, Tokyo, Japan.

R.G. Steen and K.J. Helton.
St. Jude Children’s Research Hospital, Memphis, TN, USA.

1241. Improved Phase Processing for Enhanced Visualization of Veins in the Brain Using HRBV Imaging.
Washington University and MRI Institute for Biomedical Research, St. Louis, MO, USA and Friedrich-Schiller University, Jena, Germany.

MR Imaging of Neuropsychiatric Disorders, Head Trauma, and Stroke-Vascular
Hall C
Tuesday: 13:30 – 15:30

University of New Mexico, Albuquerque, NM, USA.

1243. Correlation of Volumetric Magnetization Transfer Imaging (MTI) with Clinical Functioning in Neuropsychiatric Systemic Lupus Erythematosus (NPSLE).
Leiden University Medical Center, Leiden, The Netherlands.

1244. Comparison of ADC Histograms of Patients with Neuropsychiatric Systemic Lupus Erythematosus and Healthy Volunteers.
Leiden University Medical Center, Leiden, The Netherlands.

National Institutes of Health, Bethesda, MD, USA and Hospital Na Homolce, Prague, Czech Republic.

J.R. MacFall, R. Krishnan and M.E. Payne.
Duke University, Durham, NC, USA.
1247. Volumetric Asymmetries in Late-Onset Mood Disorders.
University of California, Los Angeles, CA, USA; University of Pennsylvania School of Medicine, Philadelphia, PA, USA and Harvard Medical School, Boston, MA, USA.

Imperial College School of Medicine and Hammersmith Hospital, London, UK.

1249. Gender Effects on Regional Cerebral Blood Flow Abnormalities on Perfusion MRI in Abstinent Methamphetamine Users.
L. Chang, T. Ernst, O. Speck, M. DeSilva, H. Petal and E. Miller.
UCLA School of Medicine and Harbor-UCLA Medical Center, Torrance, CA, USA.

1250. Diffusion-Weighted MRI Indicates that Both Vasogenic and Cytotoxic Edema Contribute to Human Brain Contusion.
Meiji College of Oriental Medicine, Kyoto and Kyoto Prefectural University of Medicine, Kyoto, Japan.

J.P. Williams, D.S. DeWitt, M.J. Quast, T.A. Kent and D.S. Prough.
The University of Texas Medical Branch, Galveston, TX, USA.

1252. Brain Changes Following Cardiopulmonary Bypass Graft Surgery Detected By Serially Registered MRI.
Hammersmith Hospital, London, UK.

1253. Clinical Stroke Imaging at 3 T.
University of Calgary, Calgary, AB, Canada.

Ehime University School of Medicine, Ehime, Japan.

1255. Nitric Oxide Mediates Hypoxia Induced Cerebral Vasodilation in Humans.
Leiden University Medical Center, Leiden, The Netherlands.

1256. Magnetic Resonance Imaging Finding of Generalized Tonic Clonic Seizure Induced Transient Brain Changes.
Yonsei University, Seoul, Korea.

1257. Studies of Cortical Excitability and Connectivity With Combined TMS, EEG, and MRI.
Helsinki University Central Hospital, Helsinki, Finland.

1258. Estimation of Regional Brain Iron Content in Restless Leg Syndrome.
Johns Hopkins University, Baltimore, MD, USA.
MR Imaging of Aging and Degenerative Brain Diseases

Hall C
Monday: 14:00 – 16:00

1259. Diffusion Weighted Imaging (DWI) in Normal Aging, Mild Cognitive Impairment (MCI) and Probable Alzheimer's Disease (AD).
K. Kantarci, R.C. Petersen, Y.C. Xu, N.G. Campeau and C.R. Jack, Jr.
Mayo Clinic, Rochester, MN, USA.

1260. Magnetization Transfer Ratio and Mean Diffusivity Histograms from Brain White and Gray Matter:
A Normative Data-Base Spanning Six Decades of Life.
G. Iannucci, M. Cerignani, M. Bozzali and M. Filippi.
Scientific Institute H San Raffaele, University of Milan, Milan, Italy.

1261. Amyloid-β Precursor Protein (APP) Influences Ischemic Brain Lesion as Seen by MRI in APP Knock-Out and APP Overexpressing Mice.
P.R. Allegrini, M. Rudin, D. Ekatodramis, C. Sturchler-Pierrat, M. Staufenbiel, B. Sommer and Ch. Wiessner.
Novartis Pharma Ltd, Basel, Switzerland.

1262. Quantitative MRI Differences Between Alzheimer’s Disease Without and With Lacunar Infarcts.
Chang Gung Memorial Hospital, Taipei, Taiwan; University of California, San Francisco, CA, USA; University of Southern California, Los Angeles, CA, USA and University of California, Davis, CA, USA.

1263. MR Imaging and Behavior Studies of Transgenic Mice Overexpressing V717F β-Amyloid Precursor Protein.
P.N. Venkatasubramanian, C. Weiss, L. Li, J. Disterhoft, K.S. Chen and A.M. Wyrwicz.
ENH Research Institute, Evanston, IL, USA; Northwestern University Medical School, Chicago, IL, USA and Elan Pharmaceuticals, S. San Francisco, CA, USA.

1264. Magnetic Resonance Imaging of Brain Iron Deposition in Patients With Idiopathic Parkinson's Disease Using the PRIME Sequence.
Royal Hallamshire Hospital, Sheffield, UK.

1265. MRI Microscopy of Human Aged and Alzheimer's Disease Brain Samples.
M. Dhenain, N. Privat, C. Duyckaerts and R.E. Jacobs.
California Institute of Technology, Pasadena, CA, USA and Hôpital de la Salpêtrière, Paris, France.

S.A.R.B. Rombouts, F. Barkhof and P. Scheltens.
Vrije Universiteit, Amsterdam, The Netherlands.

1267. Frequency of T2 Signal Hyperintensities in Young Patients with Alzheimer's, Frontotemporal and Vascular Dementias.
University of Manchester and Manchester Royal Infirmary, Central Manchester Healthcare Trust, Manchester, UK.

1268. Quantitative Diffusion MR Imaging of Patients with Parkinson's Disease.
Norwegian University of Science and Technology and University Hospital, Trondheim, Norway.

Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Japan.
Poster Sessions

1270. Volumetric Magnetization Transfer Analysis in the Elderly.
A. Spilt and M.A. van Buchem.
Leiden University Medical Center, Leiden, The Netherlands.

1271. Pre-Operative Diffusion Weighted Imaging and Proton Spectroscopy of the Periventricular White Matter Can Distinguish Between Good and Poor Outcome From Surgery In Normal Pressure Hydrocephalus.
University of Oxford and Radcliffe Infirmary, Oxford, UK.

P.B. Barker and D.M. Yousem.
Johns Hopkins University, Baltimore, MD, USA.

S. Lemieux, G. Goldenberg, M. Downey-Lamb, O. Boyko and D. Woodruff-Pak.
Temple University and Rotman Research Institute of Baycrest Centre for Geriatric Care, Philadelphia, PA, USA.

MR Imaging of Brain: Pharmacological Effects in Animals

Hall C
Tuesday: 13:30 – 15:30

1274. Evaluation of Treatment Response to Yeast Cytosine Deaminase Gene Therapy with Diffusion MRI.
L.D. Stegman, A. Rehemtulla, T.L. Chenevert and B.D. Ross.
University of Michigan Medical School, Ann Arbor, MI, USA.

R. Frangež, M. Kosec, F. Demsar and K. Beravs.
University of Ljubljana and Institute “Jožef Stefan”, Ljubljana, Slovenia.

1276. An Assessment of Soman-Induced Status Epilepticus.
Y.A. Bhagat, A. Obenaus, M.G. Hamilton and E.J. Kendall.
University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

1277. Characterization of Cerebral Blood Flow during Anesthesia with Fentanyl, Isoflurane, or Pentobarbital in Normal Rats.
Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.

University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.

1279. Measurement of Changes in CBF in MPTP-Treated and 7-NI Protected Rats Using FAIR Technique.
Y-L. Pan, B-C. Shyu and C. Chang.
Academia Sinica, Taipei, Taiwan, Republic of China.

1280. Detection of Widespread Alterations in Brain Diffusion Following Focal Striatal Injection of the Inflammatory Cytokine TNF-α.
John Radcliffe Hospital and University of Oxford, Oxford, UK and University of Southampton, Southampton, UK.
1281. Neuroprotective Effects of FK506 on Experimental Focal Ischemia Quantitatively Assessed by Diffusion-weighted MRI.

Meiji College of Oriental Medicine and Kyoto Prefectural University of Medicine, Kyoto, Japan and Fujisawa Pharmaceutical Co., Ltd, Osaka, Japan.

1282. Neuroprotection by Tetrahydrocannabinol in an in vivo Excitotoxicity-Model as Studied by Diffusion-Weighted and T2-Weighted MRI.

M. van der Stelt, W.B. Veldhuis, P.R. Bär, G.A. Veldink, J.F.G. Vliegenthart and K. Nicolay.
Utrecht University and University Medical Center Utrecht, The Netherlands.

MR Imaging of Brain Hypoxia and Ischemia: Animal Models

Hall C
Tuesday: 13:30 – 15:30

1283. CO2 Reactivity During Transient Focal Cerebral Ischemia: A Perfusion-Weighted MRI Investigation in Rat Brain.

C. Franke, L. Olah, W. Schwindt and M. Hoehn.
Max-Planck-Institute for Neurological Research, Cologne, Germany.

1284. MRI Detection of Subacute Hemorrhagic Transformation in the Rat Suture Occlusion Model.

Stanford University, Stanford, CA, USA.

1285. Serial MRI after Transient Focal Cerebral Ischemia in Rats: Dynamics of Tissue Injury, Blood-Brain-Barrier Damage and Edema Formation.

Stanford University, Stanford, CA, USA.

1286. Rapid Response of Cerebral T1 Upon Global Ischemia in Rat.

University of Kuopio, Kuopio, Finland.

1287. MR-Angiography Reveals Hemodynamic Variability in Experimental Stroke.

M. Liu, M. Besselmann, M. Diedenhofen, C. Franke and M. Hoehn.
Max-Planck-Institute for Neurological Research, Cologne, Germany and Wuhan Institute of Physics, Wuhan, China.

1288. In Vivo Correlation of ADC and T2 in Normal and Ischaemic Rat Brain and Trigeminal Nerve.

M.D. Does and J.C. Gore.
Yale University School of Medicine, New Haven, CT, USA.

1289. Temporal Study of Rat Brain Following Ischemia/Reperfusion by Quantitative T2-Weighted MRI and Diffusion-Weighted MRI.

Academia Sinica and National Yang-Ming University, Taipei, Taiwan, Republic of China.

1290. Comparison of Cerebral Tissue Water T2 and Apparent Diffusion Coefficient Following Transient Hypoxia-Ischaemia in Neonatal Piglet Brain.

University College London, London, UK.
1291. **Quantitative Measurements of Cerebral Blood Volume Under Hypercapnia, Hypoxemic Hypoxia, Hemorrhagic Hypotension and Hemodilution in Rats Using Magnetic Resonance Imaging.**
A. Celik and W. Lin.
University of North Carolina, Chapel Hill, NC, USA and Washington University, St. Louis, MO, USA.

1292. **Critical Dependence of Long-Term Outcome on Initial Reperfusion after Cardiac Arrest.**
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

1293. **Secondary Deterioration of ADC in Transient Focal Cerebral Ischemia in Rats.**
S. Wecker, L. Oláh and M. Hoehn.
Max-Planck-Institute for Neurological Research, Cologne, Germany.

1294. **Slow ADC Lesion Volume Development in a Model of Microsphere Induced Embolic Stroke.**
Worcester Polytechnic Institute, Worcester, MA, USA; Tel-Aviv University, Tel-Aviv, Israel and Umass Memorial Health Care and University of Massachusetts Medical School, Worcester, MA, USA.

1295. **Continuous Mapping of Cerebral Perfusion during Resuscitation after Global Ischemia.**
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

1296. **Human Copper-Zinc Superoxide Dismutase Transgenic Mice Exhibit Attenuated Apparent Diffusion Coefficient Changes during Reperfusion Following Focal Cerebral Ischemia.**
University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, USA.

1297. **Sex-Linked Differences in Susceptibility to Brain Ischemia and Cerebrovascular Response to Anoxia in Rats.**
Tokyo Medical and Dental University, Tokyo, Japan.

1298. **Histopathologic Correlates of Biphasic ADC Reduction after Cerebral Hypoxia-Ischemia.**
Tokyo Medical and Dental University, Tokyo, Japan.

1299. **Persistent Perfusion Deficit following Focal Cerebral Ischemia in Hyperglycemic Rats.**
J. Wei, N. Hien and M.J. Quast.
The University of Texas Medical Branch, Galveston, TX, USA.

1300. **Impaired Autoregulation with Hyperglycemia.**
J.A. Helpern, C.A. Branch, N. Huang and L. Hernandez.
Nathan S. Kline Institute, Orangeburg, NY, USA; New York University School of Medicine, New York, NY, USA and Albert Einstein College of Medicine, Bronx, NY, USA.

1301. **Combined Microdialysis and MRI in a Hyperglycemic Rat MCAO Model.**
J. Wei and M.J. Quast.
The University of Texas Medical Branch, Galveston, TX, USA.

1302. **Loss of Vasoreactivity as an Early Indicator of Pathology on the Brain of Canine: Measurements with MRI by Vasodilator Challenging.**
University of California, Irvine, CA, USA and Lovelace Respiratory Research Institute and VA Hospital, Albuquerque, NM, USA.
University of California, Irvine, CA, USA and Lovelace Respiratory Research Institute and VA Hospital Hospital, Albuquerque NM, USA.

Interventional MRI: Mixed
Hall C
Tuesday: 13:30 – 15:30

1304. Investigation of Image Artifacts of a Carbon Needle for Interventional MRI.
Friedrich-Schiller Universität, Jena, Germany.

1305. A Study of the Use of Overhauser Enhancement to Assist Needle Placement During Interventional MRI.
G. Ehnholm, K. Golman, E. Vahala, I. Leunbach, M. Ylihautala and I. Young.
Picker Nordstar, Helsinki, Finland; Nycomed Innovation, Malmo, Sweden and Hammersmith Hospital, London, UK.

1306. An MR Compatible Endoscope with Interchangeable Inductively-Coupled Receiver Coil and Tip Tracking Facility.
D.J. Gilderdale, D.J. Larkman, G.A. Coutts, A.D. Williams and N.M. deSouza.
Hammersmith Hospital, London, UK.

1307. Active Marker of Catheters for MRI Guided Interventions.
F. Toennissen, A. Melzer, F. Götz, M. Busch and R. Seibel.
Mediport Simag GmbH, Berlin, Germany; University of Applied Science Gelsenkirchen, Germany and Institute of Diagnostic and Interventional Radiology, Mülheim/Ruhr, Germany.

University of Wisconsin-Madison, Madison, WI, USA.

University of Wisconsin Hospital & Clinics, Madison, WI, USA.

1310. Tracking of Susceptibility-Based Devices in 2D Subtraction Images.
University Hospital, Utrecht, The Netherlands.

1311. Direct Visualization of Susceptibility-Based Devices in Relation to the Vasculature.
University Medical Center, Utrecht, Netherlands.

1312. A Loopless Helical Intravascular MR Imaging Antenna.
Johns Hopkins School of Medicine, Baltimore, MD, USA and National Institutes of Health, Bethesda, MD, USA.

1313. Intracoronary High-Resolution MR Imaging Using a Loopless Antenna: An Initial In Vivo Study.
Johns Hopkins Medical Institutions, Baltimore, MD, USA.
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1314.</td>
<td>New Concept of Vena Cava Filters with Signal Enhancement in Magnetic Resonance Imaging.</td>
<td>A. Melzer, G. Schaefer, F. Toennissen and M. Busch</td>
<td>University of Applied Sciences, Gelsenkirchen, Germany; Mediport Simag GmbH, Berlin, Germany and Institute of Diagnostic and Interventional Radiology, Mülheim/Ruhr, Germany.</td>
</tr>
</tbody>
</table>
1326. MR-guided Breast Interventions in a Vertical Open 0.5 T MR System - Wire Localization and Percutaneous High Speed Cut Biopsies.
University of Leipzig, Leipzig, Germany.

1327. A New MR Based Needle Trajectory Guidance Scheme for Neurobiopsy at 1.5T.
H. Liu, W.A. Hall and C.L. Truwit.
University of Minnesota, Minneapolis, MN, USA.

1328. Integrated Surgical Navigation in an Intraoperative MRI-System.
Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA and Massachusetts Institute of Technology, Cambridge, MA, USA.

1329. "Brain Shift" in the Intraoperative MRI.
Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA and Massachusetts Institute of Technology, Cambridge, MA, USA.

1330. Motion Robust Imaging for Continuous Intraoperative MRI.
D.F. Kacher, S.E. Maier, H. Mamata, Y. Mamata, A. Nabavi and F.A. Jolesz.
Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

C.A. White, M.J. Bronskill, W. Kucharczyk and N.B. Konyer.
Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada.

Cantonal Hospital, Winterthur, Switzerland.

1333. On the Feasibility of Integrating a Flat-Panel X-Ray Fluoroscopy System into an Open MRI System.
Stanford University, Stanford, CA, USA; Sunnybrook Health Sciences Center and University of Toronto, Toronto, Ontario, Canada; GE Medical Systems, Milwaukee, WI, USA and Lunar Corp., Madison, WI, USA.

Interventional MRI: Thermometry
Hall C
Wednesday: 13:30 – 15:30

R.J. Stafford and J.D. Hazle.
The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.

1335. Interleaved Gradient-Echo Planar Imaging with Fat Suppression for MR Temperature Imaging.
R.J. Stafford and J.D. Hazle.
The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
1336. MRI Temperature Measurement for Hot Saline Injection Therapy - In Vivo Study.
Brigham and Women's Hospital, Children's Hospital and Harvard Medical School, Boston MA, USA; Keio University,
Tokyo, Japan and Chiba University, Chiba, Japan.

1337. 3D MRI-Derived Thermometry and Dosimetry.
N. McDannold, F. Jolesz and K. Hynynen.
Brigham and Women's Hospital, Boston MA, USA and Tufts University, Medford MA, USA.

Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.

1339. Stabilized Temperature Mapping on a 0.3-T Open MRI System.
Hitachi Medical Corp., Chiba, Japan and The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan.

1340. Three Dimensional (3D) Temperature Imaging Using Water Proton Chemical Shift.
Tokai University, Hirasuka, Japan; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA;
Shimizu Kosei Hospital, Shimizu, Japan and Keio University, Tokyo, Japan.

B.L. Daniel and K. Butts.
Stanford University, Stanford CA, USA.

1342. Comparison of Necrosis Specific Gd-Mesoporphyrin and High Dose Gd-DTPA for Monitoring of Laser-Induced Muscle Lesions During LITT.
Westfaelische Wilhems -University, Muenster, Germany and Schering AG, Berlin, Germany.

1343. Microwave Ablation, as a Feasible Tool for MRI-Guided Interstitial Hyperthermia.
S. Morikawa, T. Inubushi, Y. Kurumi and T. Tani.
Shiga University of Medical Science, Shiga, Japan.

1344. Design of an MRI Compatible Phased Array Microwave Hyperthermia System.
University of Illinois, Urbana-Champaign, IL, USA.

1345. MR-Guided Feedback Control of Laser Thermal Therapy.
R.J. McNichols, A. Gowda and S.M. Wright.
Bio Tex, Inc. and Texas A&M University, College Station, TX, USA.

1346. In Vivo Temperature Measurements in Comparison with MR-Thermometry during Laser-Induced Interstitial Thermotherapy (LITT) of Liver Metastasis.
Humboldt University-Charité-Campus Virchow Klinikum, Berlin, Germany.

1347. Heat Induced Perfusion in Knee and its Effects on the MR Based Thermometry.
Charité Campus Virchow Klinikum, Humboldt-Universität, Berlin, Germany.

1348. MR Imaging at 0.2 Tesla During Regional Hyperthermia.
University of Munich, Munich, Germany; Siemens Medizintechnik, Erlangen, Germany; BSD Medical Corporation,
Salt Lake City, UT, USA; Dr. Sennewald Medizintechnik, Munich, Germany and Clinical Corporation Group Hyperthermia, Munich, Germany.
1349. Temperature-Induced Changes in Magnetic Susceptibility in Local Hyperthermia: Correction of MR Thermometry.
Université Victor Segalen, Bordeaux, France.

1350. The Feasibility of Monitoring of Hyperthermia in Prostate With Chemical-Shift Based MRI Thermometry.
N. McDannold, R.V. Mulkern and K. Hynynen.
Brigham and Women's Hospital and Children's Hospital, Boston MA, USA and Tufts University, Medford MA, USA.

1351. Thermal Mapping with a Neural Network Approach for the Planning and Conduct of MR Guided Cryosurgeries.
N. Harrison, F. Larose, D. Laurendeau and C. Moisan.
Laval University, Quebec City, Quebec, Canada and Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada.

E. Samset, T. Mala, I. Gladhaug, O. Soreide and E. Fosse.
The National Hospital of Norway, University of Oslo, Oslo, Norway.

1353. MR Guided Cryosurgery of Liver Tumors with MnDPDP: A Pilot Study.
G. Dionne, M. Dufour, J. Morin and C. Moisan.
Quebec City University Hospital, Quebec City, Quebec, Canada.

1354. Percutaneous MR-Guided Cryotherapy of the Canine Kidney.
University of Technology, Aachen, Germany.

1355. MRI Monitoring of Focused Ultrasound Surgery (FUS) in a Breast Tissue Model - in vivo study.
German Cancer Research Center (dkfz), Heidelberg, Germany and Federal Office for Radiation Protection, Neubeuberg, Germany.

R. Chopra, S.F. Foster and M.J. Bronskill.
Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada.

1357. MRI Thermal Dosimetry During Focused Ultrasound Surgery with Multiple Sonications.
Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA and Tufts University, Medford MA, USA.

1358. Thermal Dose Deposition with Focused Ultrasound Using a Spiral Heating Trajectory under MR Control.
Victor Segalen University, Bordeaux, France and LEP Philips, Limeil-Brévannes, France.

Université Victor Segalen and Institut Bergonié, Bordeaux, France.

1360. MR Guided Focused Ultrasound Hyperthermia: B₀ Field Dynamic Perturbation Due to a Moving Transducer.
Université Victor Segalen, Bordeaux, France.
Poster Sessions

1361. **MR Guided Focused Ultrasound Hyperthermia: Optimised Trajectory of the Focal Point Leading to a Uniform Temperature Profile in the Tissue.**
Université Victor Segalen, Bordeaux, France.

1362. **MR Guided Focused Ultrasound Thermal Therapy in a Canine Tumor Model.**
University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.

1363. **MRI Guided Radiofrequency (RF) Ablation of the Femur in a Porcine Model.**
University Hospitals, Case Western Reserve University, Cleveland, OH, USA.

1364. **How Does Alteration of Hepatic Blood Flow Affect Liver Perfusion and Radiofrequency Induced Thermal Lesion Size in Rabbits’ Liver?**
University Hospitals, Case Western Reserve University, Cleveland, OH, USA.

1365. **Perfusion Modulated MRI Guided Radiofrequency (RF) Ablation of the Kidney in a Porcine Model.**
University Hospitals, Case Western Reserve University, Cleveland, OH, USA.

MR Systems & Gradients
Hall C
Wednesday: 13:30 – 15:30

1366. **Planar Gradient Coil Design Considering Pole Pieces of the Permanent Magnet.**
Kyunghee University and KAIST, Seoul, Korea.

1367. **A Bi-Convex Gradient Coil for Open MRI.**
Kyunghee University and KAIST, Seoul, Korea.

1368. **Stream Function Optimization for Gradient Coil Design.**
D. Tomasi.
Universidad Nacional de General San Martin, Buenos Aires, Argentina.

1369. **Open Z-Gradient Designs for Magnetic Resonance Imaging.**
S. Dodd, D.S. Williams and C. Ho.
Carnegie Mellon University, Pittsburgh, PA, USA.

1370. **Multimodular Gradient Coil Set where Two Primary Coils Share a Single Common Shield.**
L.S. Petropoulos.
Picker Medical Systems, Cleveland, OH, USA.

1371. **Experimental Study of Gradient Coil Acoustic/Magnetic Frequency Response Functions on a 4T Whole Body Imager.**
The University of Western Ontario and John P. Robarts Research Institute, London, Ontario, Canada.
1372. "Silent MRI System" by Interrupting the Vibrational Transmission Through the Air and Solid Structures.
Toshiba Nasu Works and Toshiba Medical Engineering, Tochigi, Japan.

1373. Electromagnetic Criteria for Prepolarization Coils.
G. Scott, S. Conolly and A. Macovski.
Stanford University, Stanford, CA, USA.

1374. Compact, High-Field Symmetric and Asymmetric MRI Magnet Designs.
S. Crozier, H. Zhao and D.M. Doddrell.
University of Queensland, Brisbane, Queensland, Australia.

University of Queensland, Brisbane, Queensland, Australia.

Stanford University, Stanford, CA, USA.

1377. Edge Cooling for Low-Field Homogeneous Magnets.
Stanford University, Stanford, CA, USA.

1378. Determination of Shims Needed for Correction of Tissue Susceptibility Effects in fMRI.
A. Jesmanowicz, P. Starewicz and J.S. Hyde.
Medical College of Wisconsin, Milwaukee, WI, USA and Resonance Research Inc., Billerica, MA, USA.

University of Cambridge, Cambridge UK.

University of Tsukuba, Tsukuba, Japan and Sumitomo Special Metals Co. LTD, Osaka, Japan.

1381. Development of a Compact MR Microscope Using a 1.0 T Permanent Magnet.
University of Tsukuba, Tsukuba, Japan.

1382. 600MHz MR Microscopic Imaging.
College of Medicine, Konkuk University, Choongbuk, Korea; Korea Advanced Institute of Science and Technology, Seoul, Korea and Korea Basic Science Institute, Korea.

1383. MR Microscopy of Mice at 1.0 Tesla.
T. Haishi, Y. Akita and K. Kose.
University of Tsukuba, Tsukuba, Japan.

University of Sheffield, Sheffield, UK.

1385. Automatic Scan Prescription for Brain MRI.
T. Ernst, L. Itti and L. Chang.
Harbor-UCLA Medical Center, Torrance, CA, USA.
Poster Sessions

1386. MRI Signal Stability in a Phantom.
C.R. Michelich, G. McCarthy and J.R. MacFall.
Duke University Medical Center, Durham, NC, USA.

1387. Fatal Imaging and Spectroscopy at Zero Tesla.
Biomedizinische NMR Forschungs GmbH, Göttingen, Germany.

RF Coils
Hall C
Monday: 14:00 – 16:00

1388. The Coaxial Reentrant Cavity (ReCav) Coil for High Frequency Large Volume MRI/S.
B.L. Beck, H.R. Brooker and S.J. Blackband.
University of Florida, Gainesville, FL, USA; The National High Magnetic Field Laboratory, Tallahassee, FL, USA and the University of South Florida, Tampa, FL, USA.

1389. The Feasibility of Transversal Volume Imaging in SMASH.
M. Nittka, M. Griswold, R. Heidemann and A. Haase.
Universität Würzburg, Würzburg, Germany.

1390. The Double Tuned 1H 23Na Crosscage Resonator for High Field NMR Microscopy.
T. Lanz, A. Weisser and A. Haase.
Universität Würzburg and Rapid Biomedical, Würzburg, Germany.

1391. B_1 Field Plots for a 3 Tesla Birdcage Coil: Concordance of Experimental and Theoretical Results.
M. Alecci, C.M. Collins, M.B. Smith and P. Jezzard.
John Radcliffe Hospital, University of Oxford, Oxford, UK and Penn State College of Medicine, Hershey, PA, USA.

1392. B_1 Field Profile Along the Birdcage Coil Axis and its RF Shield Dependence.
S. Li, Q. Liu, C.M. Collins, P.D. Haig, P.J. Delp and M.B. Smith.
GE Medical Systems, Waukesha, WI, USA and Penn State College of Medicine, Hershey PA, USA.

1393. A New 3.0T Hybrid-Spiral-Birdcage (HSB) Coil for Improved Homogeneity Along Z-Axis.
KAIST and MEDISON Co. Ltd, Taejon, Korea.

1394. A 4 Channel Head Coil for SENSE Imaging.
D.J. Herlihy, D.J. Larkman, H. Fujita, M. Burl and J.V. Hajnal.
Hammersmith Hospital, London, UK and Picker International Inc., Cleveland, OH, USA.

1395. A Four Port Drive Flat-Element Transmission-Line Coil for Brain Imaging at 3T.
P.J. Ledden, L.L. Wald and J.T. Vaughan.
Nova Medical, Inc. Wakefield MA, USA; Massachusetts General Hospital, Charlestown, MA, USA and University of Minnesota, Minneapolis, MN, USA.

1396. Use of a Transmission Line Resonator as a Volume Phased Array.
P.J. Ledden and L.L. Wald.
Nova Medical, Inc. Wakefield, MA, USA and Massachusetts General Hospital, Charlestown, MA, USA.

1397. An Efficient Model for Evaluating the Effects of Leg Current Distributions on Birdcage Coils.
D.K. Spence and S.M. Wright.
Texas A&M University, College Station, TX, USA.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1398</td>
<td>A 4-Channel Volume Coil for Vertical Field MRI</td>
<td>G.R. Duensing, U. Gotshal and D. Molyneaux</td>
<td>MRI Devices Corporation, Gainesville, FL, USA.</td>
</tr>
<tr>
<td>1399</td>
<td>"Millipede" Imaging Coil Design for High Field Micro Imaging Applications</td>
<td>W.H. Wong and S. Sukumar</td>
<td>Varian NMR Systems, Palo Alto, CA, USA.</td>
</tr>
<tr>
<td>1401</td>
<td>Theoretical and Experimental Optimisation of the Dead Time of RF Coils</td>
<td>M. Alecci, G. Placidi, D.J. Lurie and A. Sotgiu</td>
<td>Universita' dell'Aquila, L'Aquila, Italy and University of Aberdeen, Foresterhill, UK.</td>
</tr>
<tr>
<td>1402</td>
<td>Rigid Signal-to-Noise Analysis of Coupled MRI Coils Connected to Noisy Preamplifiers and the Effect of Coil Decoupling on Combined SNR</td>
<td>A. Reykowski and J. Wang</td>
<td>Siemens Medical Engineering, Erlangen, Germany.</td>
</tr>
<tr>
<td>1403</td>
<td>Asymmetric Coil Sensitivity in Two-Coil Phased Array Due to Magnetic Interactions</td>
<td>E. Ramsay, J. Bishop and D.B. Plewes</td>
<td>University of Toronto, Toronto, Ontario, Canada.</td>
</tr>
<tr>
<td>1404</td>
<td>Intrinsic RF Coil Isolation in a Gradient B1-Field</td>
<td>S.B. King, S.M. Varosi and G.R. Duensing</td>
<td>MRI Devices Corporation, Gainesville, FL, USA.</td>
</tr>
<tr>
<td>1405</td>
<td>RF Coil Sensitivity Estimation for Intensity Correction or Encoding</td>
<td>D.F. Kacher, E. Gao, H.M. O'Leary, W.E. Kyriakos, J.P. Kaufhold, Q.Y. Ma, W.M. Wells and F.A. Jolesz</td>
<td>Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Hong Kong University, Hong Kong, China and Boston University, Boston, MA, USA.</td>
</tr>
<tr>
<td>1407</td>
<td>Empirical Description of the SNR Pattern of Shaped Circular Surface Coils</td>
<td>T. Prock, D.J. Collins and M.O. Leach</td>
<td>Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, UK</td>
</tr>
<tr>
<td>1408</td>
<td>A Simple Two-Dimensional Model for Dielectric Resonance</td>
<td>J. Tropp and J. Dahlke</td>
<td>GE Medical Systems, Fremont CA and Waukesha, WI, USA.</td>
</tr>
<tr>
<td>1409</td>
<td>Electromagnetic Analysis and Design of Magnetic Resonance Radio Frequency Coils Using the Finite-Difference Time-Domain Technique</td>
<td>J.R. Hadley and D.L. Parker</td>
<td>University of Utah, Salt Lake City, UT, USA.</td>
</tr>
<tr>
<td>1410</td>
<td>FDTD Analysis of an MRI System Housed in a Screened Room</td>
<td>H. Fujita, I.R. Young, R.S. Orton, W.M.A. Qureshi, M. Burl, M.A. Morich and J.V. Hajnal</td>
<td>Picker International Inc., Cleveland OH, USA; Marconi Research Centre, Chelmsford, UK and Hammersmith Hospital, London, UK.</td>
</tr>
</tbody>
</table>
1411. High Temperature Superconducting RF Coil for MR Microscopy at 600 MHz.
Pai Chai University and Korea Research Institute of Standards and Science, Taejon, South Korea.

1412. Simulation of the Sensitivity of HTS Coil and Coil Array for Head Imaging.
Hong Kong University, Hong Kong, China and Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

1413. Design & Testing of Superconducting Surface Coil Using MoM.
F. Jing, M.S. Chow, E.K. Chan, K.K. Wong, E. Gao, Q.Y. Ma and E.S. Yang.
The University of Hong Kong, Hong Kong.

1414. An Image-Based Stray RF Current Measurement Technique.
C.C. Guclu, K.C-H. Wu and S. Murawski.
GE Medical Systems, Milwaukee, WI, USA.

1415. Probe For 1H Decoupled 31P MRS of the Head and Neck Region.
D. Klomp, D. Collins, H. van den Boogert, A. Schwarz, M. Rijpkema, T. Prock, M. Leach and A. Heerschap.
University Hospital Nijmegen, Nijmegen, The Netherlands and Royal Marsden Hospital, Sutton, Surrey, UK.

1416. Rapidly Switchable RF Coil for 19F/1H NMR Studies.
University of Minnesota Medical School, Minneapolis, MN, USA.

1417. A Flexible Dual Resonant 1H/19F RF Coil for In-Vivo Magnetic Resonance Spectroscopy.
D.J. Collins, T. Prock and M.O. Leach.
Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, UK.

1418. Electrode Probes for Interventional MRI.
Stanford University, Stanford, CA, USA.

1419. High Resolution MRI at 1.0 T: Using an Intravascular Receiver Coil.
Philipps University and University Hospital, Marburg, Germany.

1420. Calculation of SNR for 2- and 4- Coil Breast Arrays.
E. Ramsay, J. Bishop and D.P. Plewes.
University of Toronto, Toronto, Ontario, Canada.

1421. Comparison of Breast Coils.
University of Toronto, Toronto, Ontario, Canada.

1422. Development of Breast STS Coil with Optimized RF Field Uniformity.
Ewha Womans University and Yonsei University, Seoul, Korea.

1423. fMRI on Primates with Custom Tailored RF Coils.
H. Merkle, M. Augath, T. Trinath, N. Logothetis and K. Ugurbil.
The University of Minnesota Medical School, Minneapolis, MN, USA and Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.

1424. Effects of Coil Design on the Sensitivity of Functional MRI to Task Related Activation.
University of Wisconsin, Madison, WI, USA and IGC Medical Advances, Milwaukee, WI, USA.
1425. RF Coil Optimization for 0.015 Tesla Very Low-Field Hyperpolarized Noble Gas MRI.
Korea University, Seoul, Korea; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Nassau Community College, Garden City, NY, USA and Midwest RF, Hartland, WI, USA.

RF Pulses
Hall C
Wednesday: 13:30 – 15:30

City University, London, UK and Gray Laboratory Cancer Research Trust, Northwood, Middlesex, UK.

1427. Similarities and Differences between FOCI Pulses and VERSE Transformed Hyperbolic Secant Pulses.
E.C. Wong and W-M. Luh.
University of California, San Diego, CA, USA.

1428. Optimization of RF Pulse Shape with Multiple Constraints.
D.R. Lee, S. Kim, C.B. Ahn and C.H. Oh.
Korea University and Kwangwoon University, Seoul, Korea.

1429. Presaturation of Irregular Spatial Structures With Two Dimensional Waveforms Corrected for B_1-Inhomogeneities.
C. Kiefer and U. Klose.
University of Tübingen, Tübingen, Germany.

1430. T_2 Selective Hyperbolic-Secant Pulses.
A. Raddi and U. Klose.
University of Tübingen, Tübingen, Germany.

1431. Implementation of Hybrid Basis Non-Fourier Spatial Encoding for Dynamic Adaptive MRI.
Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA and Massachusetts Institute of Technology, Cambridge, MA, USA.

MR Imaging of Genitourinary and Body Oncology
Hall C
Monday: 14:00 – 16:00

1432. MR Microscopy of Radical Prostatectomy Specimens in a 4T Whole-Body MRI Scanner: Comparison of T_2 and T_1p Weighting with Histology.
Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

1433. Potentials of Kinetic Parameters for Differentiation of Prostate Cancer and Peripheral Zone Using Dynamic MRI.
University Hospital, Nijmegen, The Netherlands.
1434. **The Use of Echo-Planar Imaging to Obtain ADC’s for Different Tissues within the Prostate.**
 Hull Royal Infirmary, Hull, UK.

1435. **Investigation of Anisotropy in the Prostate Using Echo Planar Diffusion Weighted Imaging.**
 Hull Royal Infirmary, Hull, UK.

1436. **Comparison of Fast Recovery Fast Spin Echo and Conventional Fast Spin Echo for T2 Weighted Imaging of the Prostate Gland.**
 Brigham and Women’s Hospital, Boston, MA, USA and GE Medical Systems, Fort Lee, NJ, USA.

1437. **Use of Dynamic Enhanced Magnetic Resonance Imaging (DEMRI) to Assess the Effects of Anti-Angiogenic Therapy on Tumour Associated Vasculature.**
 H. Marcos, J. Butman, S. Libutti, K. Kurdziel and P. Choyke.
 National Institutes of Health, Bethesda, MD, USA.

1438. **Uncertainty in the Measurement and Analysis of Tracer Kinetics Using Dynamic Contrast-Enhanced MRI.**
 D.L. Buckley.
 University of Florida, Gainesville, FL, USA.

1439. **Consensus Recommendation for Acquisition of Dynamic Contrasted-Enhanced MRI Data in Oncology.**
 Wayne State University, Detroit, MI, USA; Fox Chase Cancer Center, Philadelphia, PA, USA; University of Michigan, Ann Arbor, MI, USA; National Cancer Institute, Bethesda, MD, USA; Stanford University, Palo Alto, CA, USA; Weimann Institute, Rehovot, Israel; German Cancer Research Center, Heidelberg, Germany; Memorial Sloan-Kettering, New York, NY, USA; Roberta Research Institute, London, Ontario, Canada; University of Iowa, Iowa City, IA, USA; St. Jude’s Children’s Research Hospital, Memphis, TN, USA; University College London, London, UK and EPIX Medical, Cambridge, MA, USA.

1440. **In Vivo Hyperpolarized 129Xe NMR Spectroscopy in Tumours.**
 J. Wolber, D.J.O. McIntyre, L. Rodrigues, J.R. Griffiths, M.O. Leach and A. Bifone.
 The Institute of Cancer Research, The Royal Marsden NHS Trust, Sutton, Surrey, UK and St. George’s Hospital Medical School, London, UK.

1441. **Rectal Cancer: An Assessment of Tumoural ADC’s by BURST Diffusion Weighted Imaging.**
 A.S.K. Dzik-Jurasz, J. Wolber, M. George, C. Domenig, R.I. Swift, M.O. Leach and S.J. Doran.
 The Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey, UK; University of Surrey, Guildford, Surrey, UK and Mayday University Hospital, Sutton, UK.

1442. **Thin-Section 3D Half-Fourier RARE Imaging for the Assessment of Extramural Infiltration of Rectal Cancer: A Comparison with 2D Half-Fourier RARE.**
 Kagawa Medical University, Kagawa, Japan; Toshiba Medical Inc. and Toshiba Nasu Works, Tochigi, Japan.

1443. **The Diagnostic Accuracy of MRI in Rectal Mucinous Carcinoma.**
 J.S. Park, M-J. Kim and S.I. Park.
 Yonsei University College of Medicine Seoul, Republic of Korea.

1444. **Scrotal Disorders: Evaluation of Testicular Enhancement Patterns with Dynamic Contrast-enhanced Subtraction MR Imaging.**
 Kurashiki Central Hospital, Kurashiki, Japan.
Seirei Hamamatsu General Hospital and Hamamatsu University School of Medicine, Hamamatsu, Japan and
GE Yokogawa Medical System, Tokyo, Japan.

1446. Hypointense Ovarian Lesions on T2-WI: MR-Pathologic Correlation Rare Pathologies, which are
NOT Fibromas, Thecomas or Endometrial Cysts.
University of Tokushima, Tokushima, Japan.

1447. Fetal Gastrointestinal Imaging with MRI.
Keio University, Tokyo, Japan.

1448. Ultrafast Magnetic Resonance Imaging in the Fetal Central Nervous System.
Royal Hallamshire Hospital and Jessop Hospital for Women, Sheffield, UK.

1449. The Shape of the Developing Foetal Cortex From MR Images.
The Guy's, King's & St. Thomas' School of Medicine, Guys Hospital; Institute of Psychiatry and Great Ormond Street
Hospital for Children, London, UK.

1450. Uterine Arterial Embolization for Leiomyomas: Monitoring of Immediate and Late Volume and
Perfusion Changes with MRI.
N.M. deSouza, A.D. Williams and D.J. Larkman.
Imperial College School of Medicine, Hammersmith Hospital, London.

1451. Transgenic Mouse MRI of Polycystic Kidney Disease.
Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Boston, MA, USA.

1452. MRI Evaluation of the Normal Renal Tract.
W. Jan, J. Goodey, R. Lund and S. Rankin.
The Guy's King's and St. Thomas' Medical School and Guy's and St. Thomas' Hospital, London, UK.

1453. Moderately T2-Weighted MR Urography Using Single Shot Fast Spin Echo Technique:
Differentiation Between Benign and Malignant Urinary Obstructions.
M. Obuchi, H. Sugimoto, T. Takahara, T. Hayashi, K. Takizawa and M. Honda.
Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan and Kyorin University, Tokyo, Japan.

1454. Evaluation of Dynamic Contrast-Enhanced MRI in Detecting Renal Scarring on a Rat Injury Model.
Stanford University School of Medicine, Stanford, CA, USA.

1455. Excretory Magnetic Resonance Urography Using Breath-hold Three-Dimensional FISP.
Chonbuk National University, Chonbuk, Korea.

N. Nicaise, T. Metens, L. De Pauw and C. Matos.
Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
Poster Sessions

Gastrointestinal MR Imaging
Room Hall C.
Monday: 14:00 – 16:00

1457. **Comparison of Breath-Holding GRASE Sequence with Respiratory-triggered Fast SE and Breath-Holding Fast SE Sequences in Detection of Focal Malignant Liver Lesions.**
University of Kobe, Kobe, Japan.

1458. **Differentiation between Hemangiomas and Cysts of the Liver with Single Shot Fast Spin Echo Image Using Short and Long TE.**
University of Tokyo and GE-Yokogawa Medical Systems, Tokyo, Japan.

1459. **Detection and Characterization of Focal Liver Lesions: Usefulness of Multiple Arterial and Portal Venous Phase Images at Dynamic Gadolinium-Enhanced MR Imaging with Pathologic Correlation.**
H.Y. Ye, Y.G. Gao, Y.Q. Cai, Y. Liang, G. Yu and X.L. Ji.
PLA General Hospital, Beijing, China.

1460. **Can a Dynamic Contrast Enhanced Fast 3D Sequence be Sufficient for Liver MR Imaging?**
C.H. Coulam and K.C.P. Li.
Stanford University Medical Center, Stanford, CA, USA.

1461. **Mangafodipir Trisodium (Mn-DPDP) enhanced MR Imaging of Focal Nodular Hyperplasia of the Liver: Comparison With Dynamic Contrast-Enhanced MR imaging With Gd-DTPA.**
Humboldt-Universität, Berlin, Germany and Nara Medical University, Nara, Japan.

1462. **Sequential Use of Gadolinium Chelate and Mangafodipir Trisodium for the Assessment of Focal Liver Lesions: Initial Observations.**
University of North Carolina, Chapel Hill, NC, USA.

1463. **Detection of Liver Lesions in Candidates for Liver Surgery: Comparison of Ferumoxide Enhanced MRI and Dual Phase Helical CT.**
Johns Hopkins University School of Medicine, Baltimore, MD, USA and Duke University Medical Center, Durham, NC, USA.

1464. **Time-to-Echo Optimization for Spin Echo Magnetic Resonance Imaging of Liver Metastases Using Superparamagnetic Iron Oxide Particles.**
University of California, Los Angeles, CA, USA and Berlex Laboratories, Inc., Wayne, NJ, USA.

1465. **Peritumoral Hyperintense Rim Around Hepatic Metastases at Ferumoxides-Enhanced T1-Weighted MR Imaging.**
Higashiosaka City General Hospital, Osaka, Japan and Nara Medical University, Nara, Japan.

1466. **Assessment of Early and Late Radiation-Induced Hepatic Injury Using Superparamagnetic Iron Oxide-Enhanced MR Imaging.**
H. Yoshioka, K. Mori, Y. Saida, Y. Itai and T. Okumura.
University of Tsukuba, Tsukuba, Japan.
Keio University School of Medicine, Tokyo, Japan.

1468. MR Imaging As the Sole Pre-Operative Imaging Modality for Living Related Liver Transplantation Donor Evaluation: Preliminary Results.
V.S. Lee, L. Teperman, P.M. Berman, F. Lombardo, P.M. Reuss, G.A. Krinsky and N.M. Rofsky.
New York University, New York, NY, USA.

J. Carr, M. Abecassis, A. Blei, G. Laub, O.P. Simonetti and J.P. Finn.
Northwestern University Medical School and Siemens R&D, Chicago, IL, USA.

University of Kobe, Kobe, Japan and Shimane Medical College, Shimane, Japan.

Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan and Toshiba Medical Engineering Center, Tochigi, Japan.

Thomas Jefferson University Hospital, Philadelphia, PA, USA and Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan.

Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan and Toshiba Medical Engineering Center, Tochigi, Japan.

1474. Dynamic contrast-enhanced MR Imaging of the Pancreas With Fat Saturation.
H. Trillaud, E. Dumont and N. Grenier.
Victor Segalen University, Bordeaux, France and Philips Systèmes Médicaux, Paris, France.

Yamanashi Medical University, Yamanashi, Japan and Kyorin University, Tokyo, Japan.

1476. Quantification of Pancreatic Exocrine Function Using Secretin Stimulate MRCP.
A.R. Gillams, S. Punwani, S. Smart and W.R. Lees.
The Middlesex Hospital and University College London Medical School, London, UK.

Philips University, University Hospital, Marburg, Germany and University of Bremen, Bremen, Germany.
1478. **Assessment of Pancreatic Function with MRI.**
T. Masui, M. Katayama, S. Kobayashi, T. Ito, H. Sakahara and A. Nozaki.
Seirei Hamamatsu General Hospital and Hamamatsu University School of Medicine, Hamamatsu, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

1479. **MR Pearl Sign: The Value of MR Cholangiopancreatography (MRCP) on Diagnosis of Adenomyomatosis of the Gallbladder.**
Kyorin University, Tokyo, Japan and Yamanashi Medical University, Yamanashi, Japan.

1480. **Pigment GB Stones: MR Cholangiopancreatographic Evaluation with Emphasis on the Pitfalls.**
Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Korea.

1481. **Intraductal Papillary-Mucinous Tumors of the Bile Duct: MR Cholangiopancreatographic Features and Pathologic Correlation.**
Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

1482. **Major Papilla: Depiction with Thin-Section Three-Dimensional Contrast-Enhanced Dynamic MR Imaging with Fat Suppression.**
S. Koike, K. Ito, K. Takano, H. Okazaki, M. Yasui and N. Matsunaga.
Yamaguchi University School of Medicine, Ube Yamaguchi, Japan.

1483. **Usefulness of Postprocess of 3D Volume Data Obtained with Dynamic Contrast 3DFSPGR Evaluations of Biliary Tracts with MIP and MinIP.**
S. Kobayashi, T. Masui, M. Katayama, T. Ito, H. Sakahara and A. Nozaki.
Seirei Hamamatsu General Hospital and Hamamatsu University School of Medicine, Hamamatsu, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

1484. **MRCP Using 3D Half-Fourier RARE: Value of Workstation and Comparison With 3D Spiral CT Cholangiography.**
Japanese Red-Cross Medical Center, Tokyo, Japan; Kasukabe-Shuwa Hospital, Saitama, Japan; Kitazato-Institute Hospital, Tokyo, Japan and Toshiba Medical Inc., Tochigi, Japan.

1485. **The Use of Progressive Oblique Plane Imaging to Enhance Visualization of the Distal Common Bile Duct by MRCP.**
E.P. Tamm and A. Kawashima.
University of Texas at Houston Medical School, Houston, TX, USA.

1486. **Kinematic Evaluation of the Abdomen: Multiphase MR Hydrography and Multiphase-Multislice MR Imaging.**
T. Masui, M. Katayama, S. Kobayashi, T. Ito, Y. Nakaya, M. Kajimura, H. Sakahara and A. Nozaki.
Seirei Hamamatsu General Hospital and Hamamatsu University School of Medicine, Hamamatsu, Japan and GE Yokogawa Medical System, Tokyo, Japan.

1487. **Dimethicone as a Selective Contrast Agent for the GI Tract in Humans.**
R. Schwarz and J. Seelig.
Biocenter of the University, Basel, Switzerland.

1488. **Use of Cine MR Imaging for Evaluation of Obstructive Sites in Small Bowel Obstruction (SBO): Preliminary Results.**
T. Takahara, A. Nakamura, H. Haradome, T. Nitatori, J. Hachiya and M. Miyazaki.
Kyorin University, Tokyo, Japan and Toshiba Medical Systems Divisions, Tochigi, Japan.
1489. **MR Colonography Using Colon Distension with Air: A New Technique Using High Resolution HASTE Imaging.**
 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

1490. **Optimising Single-Shot Half-Fourier RARE Sequences for MR CO₂ Colography.**
 M.J. Graves, R.R. Sood and D.J. Lomas.
 Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

1491. **Echo-Planar Imaging in the GI Clinical Practice: Preliminary Results on Patients.**
 L. Marciani, P. Young, J. Wright, R.J. Moore, R.C. Spiller and P.A. Gowland.
 University of Nottingham and Queen's Medical Centre, University Hospital, Nottingham, UK.

1492. **Evaluation of Obstructive Sites in Small Bowel Obstruction (SBO): Comparison of MR Residue Sign with MR Transition Zone and CT Transition Zone.**
 Kyorin University, Tokyo, Japan and Yokohama Sakaie Hospital, Yokohama, Kanagawa, Japan.

1493. **High-Resolution MRI of the Normal Gut: Correlation with Histology and Delineation of Regional Differences.**
 A.D. Williams, T. Krausz and N.M. de Souza.
 Imperial College School of Medicine, Hammersmith Hospital, London, UK.

1494. **Stomach Diseases: MR Evaluation Using Combined T₂-Weighted Single Shot Echo Train Spin Echo and Gadolinium-Enhanced Spoiled Gradient Echo Sequences.**
 H.B. Marcos and R.C. Semelka.
 University of North Carolina, Chapel Hill, NC, USA.

1495. **T₂-Weighted Echo-Planar MR Imaging of the Abdomen: Optimization of Imaging Parameters.**
 T. Li and S.A. Mirowitz.
 Washington University School of Medicine, St. Louis, MO, USA.

1496. **MR Imaging of Gastric Cancer Using Single Shot Fast Spin Echo (SSFSE): Delineation of the Submucosal Layer.**
 University of Tokyo and GE-Yokogawa Medical Systems, Tokyo, Japan.

Rapid Imaging

Hall C

Monday: 14:00 – 16:00

1497. **Rapid Contrast-Enhanced FLASH-3D MR Imaging of the Brain with Segmented Application of Radio-Frequency Pre-Pulses.**
 Georgetown University, Washington DC, USA and Siemens Medical Systems, Iselin NJ, USA.

1498. **Black-Blood Cerebral MRA with a Multi-Contrast SIMVA Acquisition.**
 K. Liu and M. Loncar.
 Picker Medical System, Cleveland, OH, USA.

1499. **BURST Imaging with Steady-State Free Precession.**
 O. Heid.
 Siemens AG, Erlangen, Germany.
<table>
<thead>
<tr>
<th>Poster Session</th>
</tr>
</thead>
</table>
| **1500.** True FISP Imaging with Inherent Cancellation.
* M. Deimling and O. Heid.
* Siemens Medical Systems, Erlangen, Germany. |
| **1501.** Rapid Diffusion Imaging of the Human Spinal Cord Using Non-CPMG Single Shot FSE.
* GE Medical Systems, Buc, France and Service Hospitalier Frederic Joliot, CEA, Orsay, France. |
| **1502.** The Time Origin of RUFIS Using a Stimulated Spin Echo.
* J.-J. Hsu and I.J. Lowe.
* University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA. |
| **1503.** Parallel Imaging Strategies for Reduction of Resonance Offset Induced Artifacts and k-space Filtering Effects.
* R. Bammer, R. Stollberger, H.P. Hartung and F. Fazekas.
* University of Graz, Graz, Austria. |
| **1504.** SNR in Single-Shot Imaging Using Paritally Parallel Acquisition (PPA) Techniques.
* M.A. Griswold, A. Haase and P.M. Jakob.
* University of Würzburg, Würzburg, Germany. |
| **1505.** Calculation of Signal-to-Noise Ratio for Coil Sensitivity Encoding Method.
* J. Wang.
* Siemens Medical Engineering, Erlangen, Germany. |
| **1506.** Parallel Image Reconstruction from Multiple Receiver Arrays for Fast MRI.
* Brigham and Women's Hospital and Children's Hospital, Boston, MA, USA. |
| **1507.** Method for combining UNFOLD with SENSE or SMASH.
* P. Kellman and E.R. McVeigh.
* National Institutes of Health, Bethesda, MD, USA. |
| **1508.** Real-Time Multi-Slice Imaging.
* H. Eggers and P. Boesiger.
* Philips Research, Hamburg, Germany and Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland. |
| **1509.** Fast Three-Dimensional Spiral Imaging.
* Stanford University, Stanford, CA, USA. |
| **1510.** Spiral Imaging With Variable Sampling Rates.
* O. Heid.
* Siemens AG, Erlangen, Germany. |
| **1511.** Tagged Imaging Using Limited Angle Projection Reconstruction.
* Institutes of Health, Bethesda, MD, USA. |
| **1512.** Advances in 3D T2-Weighted Projection Imaging.
* CINVESTAV, Mexico City, Mexico; Universidad de Guanajuato, Leon, Mexico and University of Wisconsin, Madison, WI, USA. |
| **1513.** 3D Multiphase Coronary Artery Imaging in a Single Breath-hold Using Undersampled Projection Reconstruction.
* University of Wisconsin, Madison, WI, USA. |
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1516</td>
<td>FFT for High Speed MR Fluoroscopy Reconstruction.</td>
<td>Y. Zhu</td>
<td>GE Corporate Research & Development, Schenectady, NY, USA.</td>
</tr>
<tr>
<td>1518</td>
<td>Acquisition of Power Intensive Images at 8T.</td>
<td>A. Kangarlu and P-M L. Robitaille.</td>
<td>The Ohio State University, Columbus, OH, USA.</td>
</tr>
<tr>
<td>1520</td>
<td>Automatic Adjustment of all First- and Second-Order Shims for Slices of Arbitrary Orientation.</td>
<td>J. Shen.</td>
<td>The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA and New York University School of Medicine, New York, NY, USA.</td>
</tr>
<tr>
<td>1521</td>
<td>Rapid High SNR EPI Based Field Maps Without the Need for Phase Unwrapping.</td>
<td>R.T. Constable, C. Studholme and D.D. Spencer.</td>
<td>Yale University School of Medicine, New Haven, CT, USA.</td>
</tr>
<tr>
<td>1522</td>
<td>Respiratory Phase Specific Reference Scan for EPI Ghost Correction.</td>
<td>E. Yacoub, K. Ugurbil and X. Hu.</td>
<td>University of Minnesota School of Medicine, Minneapolis, MN, USA.</td>
</tr>
<tr>
<td>1523</td>
<td>Correction of Motion Artifact on BURST Imaging.</td>
<td>S. Kurokawa, T. Matsuda, S. Urayama, N. Sugimoto, K. Hayashi, H. Inoue, M. Komori and S. Eiho.</td>
<td>Kyoto University and Kyoto University Hospital, Kyoto, Japan; National Cardiovascular Center, Suita, Osaka, Japan and Rakuwakai Otowa Hospital, Kyoto, Japan.</td>
</tr>
<tr>
<td>1524</td>
<td>Reduction of the Blurring Artifacts due to the Local Field Inhomogeneity in T2*-Weighted EPI.</td>
<td>Q.X. Yang, H.E. Smith, R.J. Demeure and M.B. Smith.</td>
<td>The Pennsylvania State University College of Medicine, Hershey, PA, USA and Université Catholique de Louvain, Brussels, Belgium.</td>
</tr>
</tbody>
</table>
1527. **3D IR Half-Fourier RARE for Thin-Section Dynamic MR Imaging.**
Kagawa Medical University, Kagawa, Japan and Toshiba Medical Inc. and Toshiba Nasu Works, Tochigi, Japan.

1528. **MRI of P.C. Lauterbur's Birthday Cake: Bananas, Peaches, and Susceptibilities.**
C. Maxton and J. Frahm.
Universität Göttingen, and Biomedizinische NMR Forschungs GmbH, Göttingen, Germany.

1529. **Improved SNR in Breath-Hold Cardiac Cine Imaging by Slice Interleaving.**
The Johns Hopkins University School of Medicine, Baltimore, MD, USA and National Institutes of Health, Bethesda, MD, USA.

1530. **Non-CPMG Fast Spin Echo in Practice.**
P. Le Roux.
GE Medical Systems, Buc, France.

1531. **Comparison of 2- and 3-Point Dixon Techniques in RF- and Readout-Shifted FSE Sequences.**
H.K. Song, A.C. Wright, R.L. Wolf and F.W. Wehrli.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

Cardiac and Vascular Image Processing

Hall C

Monday: 14:00 – 16:00

1532. **Multi-scale Line Enhancement Filtering for Intracranial Magnetic Resonance Angiography: Comparison of Minimum Roughness and Maximum Curvature for Vessel Enhancement.**
B.E. Chapman and D.L. Parker.
University of Utah, Salt Lake City, UT, USA.

1533. **A Comparison of Densiometric Projections with a Depth Buffer Segmentation to a MIP Display for Intracranial MRA.**
University of Utah, Salt Lake City, UT, USA.

1534. **Skeletonized Maximum Intensity Projections for Runoff Vessels: A Method of Displaying Magnetic Resonance Angiograms.**
H. Marcos, V. Ho, P. Choyke, R. Mullick and P Yim.
National Institutes of Health and Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

1535. **Improving Visualization of Blood Pool Agent MRA with Virtual Contrast Injection.**
X. Tizon and Ö. Smedby.
Swedish University of Agricultural Sciences, Uppsala, Sweden and University Hospital, Linköping, Sweden.

1536. **Automatic Registration of Precomputed Anatomical Templates for Rapid 3D Segmentation.**
G. Shechter and E.R. McVeigh.
Johns Hopkins University, Baltimore, MD, USA and National Institutes of Health, Bethesda, MD, USA.

1537. **Segmentation of Time-of-Flight Images Using Thresholding and Region-Growth Estimation Techniques (TARGET) to Suppress Fat Signals on Projected Views.**
National Yang-Ming University and Veteran General Hospital, Taipei, Taiwan, ROC.
1538. **Autocorrection of Motion Corruption in 3D Time-of-Flight MR Angiograms of the Circle of Willis.**
Mayo Clinic Rochester, MN, USA.

1539. **Contrast-Enhanced MRA Imaging Time-Sense Artery and Vein Separation.**
M. Zhang, W. Li and R.R. Edelman.
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

1540. **Time Series Method for Automated Segmentation of Blood Vessels and CSF Lumens.**
University of Illinois at Chicago, Chicago, IL, USA.

1541. **Utilizing Supplementary Flow Information in Dual Contrast SIMVA for Black-Blood MRA.**
Picker Medical System, Cleveland, OH, USA.

1542. **Quantitative Analysis of the Carotid Stenosis Using 3D MR and CT Images.**
C.T. Roque, D. Chen, B. Li and Z. Liang.
State University of New York, Stony Brook, NY, USA.

1543. **Connectivity and Segmentation of MR Coronary Arteries.**
H.E. Cline and S. Ludke.
GE Corporate Research and Development, Schenectady NY, USA.

1544. **A Graph Searching Technique for Semi-Automated Visualization in Three-Dimensional Coronary Angiography.**
D.R. Thedens.
University of Iowa, Iowa City, IA, USA.

1545. **A New Multi-Planar Interpolation Technique for Three Dimensional Medical Image Rendering Using Laplace's Equation.**
Kwangwoon University, Seoul, Korea.

1546. **Flow Encoded EPI Visualised with the Daubechies 2D Wavelet.**
A. Rodríguez-González and P. Mansfield.
UAM-Iztapalapa, México and The University of Nottingham, Nottingham, UK.

1547. **Two Phase Segmentation Method for Cardiac MRI Data Involving Deformable Contour and Deformable Model.**
Technical University, Lodz, Poland; University of Aarhus and Aarhus University Hospital, Aarhus, Denmark.

1548. **Automated 3D Tracking of Select LV Material Points Using Tagged MRI.**
W.S. Kerwin.
University of Washington, Seattle, WA, USA.

1549. **A New Method for Automatic Tracking and Analysis of MR Images of the Heart.**
CNR Institute of Clinical Physiology, Pisa, Italy and Addenbrooke's Hospital, Cambridge, UK.

1550. **Validation of Interpolation Technique for Heart Wall Motion Derived from MR Tagged Images.**
National Cardiovascular Center, Osaka, Japan and Kyoto University, Kyoto, Japan.

1551. **An Integrated System for Measuring Regional Cardiac Function Using Harmonic Phase MRI.**
N.F. Osman and J.L. Prince.
Johns Hopkins University, Baltimore, MD, USA.
1552. **Real-Time Interactive Visualization of the Cardiovascular System Based on Cardiac MRI.**
 T.S. Sørensen, S.V. Therkildsen, P. Makowski, J.L. Knudsen and E.M. Pedersen.
 University of Aarhus and Aarhus University Hospital, Aarhus, Denmark.

1553. **Postprocessing of 3D MRI for Computer Assisted Surgery of the Lumbar Spine.**
 C.L. Hoad, A.L. Martel and J. Webb.
 University Hospital, Queen's Medical Centre, Nottingham, UK.

1554. **Multitracer and Multimodal Coregistration and Fusion in Static and Gated Cardiac Studies.**
 Technische Universität, München, Germany.

1555. **Registration of Three-Dimensional Cardiac MRI and CT Images.**
 The Ohio State University, Columbus, OH, USA and The Cleveland Clinic Foundation, Cleveland, OH, USA.

1556. **Validation and Application of a Perceptual Difference Model for Keyhole MR Imaging.**
 Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA.

 M.S. Cohen.
 UCLA School of Medicine, Los Angeles, CA, USA.

Myocardial Perfusion Imaging

Hall C

Wednesday: 13:30 – 15:30

1558. **Assessment of First-Pass Stress and Rest Myocardial Perfusion Imaging Using Interleaved Notched Saturation: Comparison with Cardiac Catheterization.**
 Integrated Cardiovascular Therapeutics, Woodbury, NY, USA and GE Medical Systems, Milwaukee, WI, USA.

1559. **High Resolution T2-Weighted First-Pass Myocardial Perfusion Imaging Using Outer-Volume Suppression and the Intravascular Contrast Agent NC100150 Injection.**
 Nycomed Imaging A/S, Oslo, Norway and Uppsala University Hospitals, Uppsala, Sweden.

1560. **Qualitative Magnetic Resonance Perfusion Imaging in Patients with Coronary Artery Disease.**
 G.R. Cherryman, P.R. Sensky, A. Jivan, C. Reek and N.J. Samani.
 University of Leicester, Glenfield General Hospital NHS Trust, Leicester, UK.

1561. **Quantification of Regional Myocardial Blood Flow in Patients with Coronary Artery Disease by Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET).**
 Technische Universität, München, Germany and Krankenhaus München, Bogenhausen, Germany.

1562. **Compensation for Coil Sensitivity Inhomogeneities in Cardiac Perfusion Imaging.**
 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
1563. Imaging Myocardial Ischemia with AngioMARK in the Pig.
 Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, USA and EPIX Medical, Inc., Cambridge, MA, USA.

1564. How Good is Qualitative Analysis of 1st Pass Gd-DTPA Multislice Myocardial Perfusion Imaging for Clinical Evaluation?
 Beth Israel Deaconess Medical Center, Boston, MA, USA.

1565. Clinical Application of Myocardial Perfusion Post PTCA with SE-EPI.
 PLA General Hospital and GE Medical Systems China, Beijing, China.

 Hôpital Cardiologique and INSA, Lyon, France.

1567. Blood-Oxygenation-Level-Dependent (BOLD) MRI in Patients with Symptoms of Coronary Artery Disease.
 Franz-Volhard-Klinik, University of Berlin, Berlin, Germany and GE Medical Systems, Leipzig, Germany.

1568. Quantitative Assessment of Myocardial Perfusion by First-Pass Dynamic MRI of Intravascular Contrast Agent: Effect of Dose and Hemodynamic State.
 Johannes Gutenberg-University, Mainz, Germany and Schering AG, Berlin, Germany.

 Mie University School of Medicine, Mie, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

MR Imaging of Myocardial Function, Hemodynamics, and Disease
Hall C
Monday: 14:00 – 16:00

 X. Qi and G.A. Wright.
 University of Toronto, Toronto, ON, Canada.

1571. Model-Based Registration of Cardiac CTA and MR Acquisitions.
 Siemens Corp Research, Princeton, NJ, USA and Cleveland Clinic Foundation, Cleveland, OH, USA.

1572. Qualitative and Quantitative Assessment of Regional Left Ventricular Wall Thickening in Short Axis MR Images of Patients with Coronary Artery Disease Using z-score for Comparison to a Normal Database.
 University of Aberdeen and Grampian University Hospitals NHS Trust, Forres, Aberdeen, UK.
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1575.</td>
<td>Quantitative Wall Motion Assessment with Real Time MR Imaging.</td>
<td>S. Flacke, R.M. Setser, S.E. Fischer and C.H. Lorenz.</td>
<td>Barnes-Jewish Hospital at Washington University Medical Center, St. Louis, MO, USA.</td>
</tr>
<tr>
<td>1580.</td>
<td>Low Body Negative Pressure and Cardiac MRI: Observations of Global and Regional Left Ventricular Changes.</td>
<td>S.J. Wilson, S.E. Rose, F. Chen, D. Rose, C.J. Bennett, K. McMahon, G.J. Galloway and D.M. Doddrell.</td>
<td>Saint Andrews War Memorial Hospital and Royal Brisbane Hospital, Brisbane, Australia.</td>
</tr>
</tbody>
</table>
1586. Effect of Partial Oxygen Pressure and Hematocrit on T₁ Relaxation in Human Blood.
Johannes Gutenberg-University, Mainz, Germany and University of Applied Sciences, Jena, Germany.

National Research Council and University of Manitoba, Winnipeg, Manitoba, Canada.

P.G. Carlier, E. Parzy, E. Giacomini, C. Wary and A. Leroy-Willig.
Pitié-Salpêtrière, Paris, France.

1589. Follow-up of Changes of Cardiac Geometry and Function in a Mouse Model of Pressure Induced Hypertrophy with Magnetic Resonance Microimaging.
University of Wuerzburg, Wuerzburg, Germany.

Carnegie Mellon University, Pittsburgh, PA, USA.

Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.

1592. The Use of Magnetization Transfer Contrast in Percutaneous Transluminal Septal Myocardial Ablation in Hypertrophic Obstructive Cardiomyopathy: Acute Results Clinical Application in the Human Heart.
National Institutes of Health, Bethesda, MD, USA.

MR Imaging of Myocardial Infarction

Hall C
Wednesday: 13:30 – 15:30

P.V. Prasad, M. Post, P. Storey, W. Li, P.R. Seoane, P.P. Harnish and R.R. Edelman.
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA and Eagle Vision Pharmaceutical Corp, Chester Springs, PA, USA.

Texas Heart Institute, Houston, TX, USA and Philips Medical System, Best, Netherlands.
1595. Comparison of Infarct Size Using T2 Weighted Turbo Spin-Echo MRI to Pathology in a Canine Model of Ischemic Heart Disease.
University of Alabama, Birmingham, AL, USA.

1596. Myocardial Postcontrast T1 Enhancement Corresponds to Decreased Regional FDG Activity in Patients with Multivessel Coronary Artery Disease.
Helsinki University Central Hospital, Helsinki, Finland and PET Centre, Turku, Finland.

1597. The Severity of Microvascular Damage Immediately Following Myocardial Infarction May Not be Sufficient to Allow Extravascular Escape of a Blood Pool Contrast Agent into the Injured Region.
National Research Council Canada, Winnipeg, Manitoba, Canada; Dayton VA Medical Center, Dayton, OH, USA and University of Manitoba, Winnipeg, Manitoba, Canada.

1598. Early In Vivo Markers of Myocardial Lesion Following Coronary Ligation in Rats.
SmithKline Beecham Pharmaceuticals, King of Prussia, PA, USA.

1599. Combined 87Rb and 23Na NMR for Imaging Infarction in Isolated Pig Hearts.
V.V. Kupriyanov, G. Dai, J. Sun, O. Jilkina, Z. Luo and R. Deslauriers.
National Research Council Canada and University of Manitoba, Winnipeg, Manitoba, Canada.

1600. Infarct Size Measurement with 3D 23Na MRI in Chronically Infarcted Rat Hearts.
Universität Würzburg, Würzburg, Germany.

1601. T2-Weighted MRI Predicts Functional Loss Early After Myocardial Infarction in Dogs: Comparison with Bis-Gadolinium-Mesoporphyrin Enhanced T1-Weighted MRI and Functional Data from Cine MRI.
University Hospital KU, Leuven, Belgium and Schering AG, Berlin, Germany.

1602. Protective Effects of Nicorandil in Reducing Myocardial Infarct Size Demonstrated by Necrosis Specific MR Contrast Media.
University of California, San Francisco, CA, USA and Schering AG, Berlin, Germany.

Myocardial Motion and Techniques

Hall C
Thursday: 13:30 – 15:30

1603. Diagnostic Value of the Electrocardiogram During Cardiac MRI Stress Testing.
University Medical Center, St. Louis, MO, USA and Philips Medical Systems, Best, The Netherlands.

1604. An Evaluation of Left Ventricular Torsion of the Paced Canine Heart with MRI Tagging.
Johns Hopkins University School of Medicine, Baltimore, MD, USA.

L. Dougherty, J.C. Asmuth and J.M. Giammarco.
Hospital of the University of Pennsylvania, Philadelphia, PA, USA and Sarnoff Corporation, Princeton NJ, USA.
1606. Ventricular Twist Allows Sensitive Detection of Early-Stage Diabetic Cardiomyopathy in the Rat.
 Washington University Medical Center, St. Louis MO, USA.

1607. RingTag: Assessment of Myocardial Midwall Motion in Volunteers and Patients with Myocardial
 Hypertrophy.
 University and ETH Zurich and University Hospital, Zurich, Switzerland.

1608. Human Heart Imaging with Dual-Echo DENSE.
 A.H. Aletras, R.S. Balaban and H. Wen.
 National Institutes of Health, Bethesda, MD, USA.

1609. Myocardial Tagging at Frame Rates Exceeding 100 Frames Per Second.
 F.H. Epstein, M.A. Guttman, M.S. Elliot and E.R. McVeigh.
 National Institutes of Health, Bethesda, MD, USA.

1610. Quantitative Evaluation of Regional Strain in Mice Using SPAMM Tagging and DENSE.
 A. Kolandaivelu and R.S. Balaban.
 National Institutes of Health, Bethesda, MD, USA.

1611. Detection of Localized Disturbances of Myocardial Motion by Means of Phase Contrast MRI and
 Correlation Analysis.
 M. Markl, B. Schneider and J. Hennig.
 University of Freiburg, Freiburg, Germany.

1612. Motion Analysis of Both Ventricles Using Tagged-MRI in Paced Canine Hearts.
 C. Ozturk and E.R. McVeigh.
 Johns Hopkins University School of Medicine, Baltimore, MD, USA and National Institutes of Health, Bethesda, MD, USA.

1613. CSPAMM Assessment of Systolic and Diastolic Left Ventricular Apical Rotation in Obesity.
 Beth Israel Deaconess Medical Center, Harvard Medical School and Joslin Clinic, Harvard Medical School, Boston, MA, USA and Philips Medical Systems, Best, The Netherlands.

1614. Assessment of Canine Cardiomyoplasty Using Tissue Tagging at 4T.
 Hospital of the University of Pennsylvania Philadelphia, PA, USA.

1615. Comparison of Phase Contrast MR with Tagging in Evaluation of Myocardial Motion.
 Kyoto University Hospital, Kyoto, Japan; National Cardiovascular Center, Suita, Japan and Freiburg University, Freiburg, Germany.

1616. Temporal Relationship of Left Ventricular Angular Displacement, Torsion and Strain Assessed by
 High Frame Rate Tagged Cardiac Magnetic Resonance Imaging.
 University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

1617. A Tool for Performing MR Based Cardiac Stress Function Exams with Realtime Acquisition,
 Reconstruction, Display and Analysis.
 GE Medical Systems, Waukesha, WI, USA.

1618. A Complex Subtraction Technique for Myocardial Slice Tracking Using a Comb Excitation
 Preparation.
 C.L. Charrier, P.D. Gatehouse and D.N. Firmin.
 Royal Brompton Hospital and Imperial College, London, UK.
1619. **Reduced Contractile Reserve and Diastolic Dysfunction in a Transgenic Mouse Model with β1-Adrenergic Receptor Overexpression Assessed by MRI.**
University of Wuerzburg, Wuerzburg, Germany.

1620. **ECG-Triggered Segmented 3D 23Na Gradient Echo Movie MRI of the Human Heart.**
A. Greiser, A. Haase and M. von Kienlin.
Physikalisches Institut, Wuerzburg, Germany.

1621. **Cardiovascular Imaging Using a Fast Spin-Echo Sequence with Radial Acquisition.**
University of Arizona, Tucson, AZ, USA.

1622. **Human Cardiac Imaging at 3 Tesla Using Phased Array Coils.**
Physikalisch-Technische Bundesanstalt, Berlin, Germany.

1623. **Cardiac Imaging at 4 Tesla.**
L. Dougherty, T.J. Connick and G. Mizsei.
Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

Coronary MR Angiography

Hall C
Thursday: 13:30 – 15:30

1624. **A Computationally Efficient Algorithm for Accurate Detection of Diaphragm Displacement in Navigated 3D Coronary MR Angiography.**
GE-Medical Systems, Milwaukee, WI, USA and Johns Hopkins University, Baltimore, MD, USA.

1625. **Selected the Optimal Period of Diastole for Eliminating Cardiac Motion in Coronary MRA by the Use of an ECG-Triggered Navigator Echo Technique.**
Weill Medical College of Cornell University, New York, NY, USA.

1626. **Simulation Tool for k-Space Reordering in Free-Breathing Navigator-Gated 3D Coronary MRA.**
Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA; Philips Medical Systems, Best, the Netherlands and University and ETH, Zurich, Switzerland.

1627. **3D Coronary-Artery Imaging with Two-Dimensional Images of the Artery as Navigators.**
Mount Sinai School of Medicine, New York, NY, USA; Stanford University, Stanford, CA, USA and General Electric Medical Systems, Milwaukee, WI, USA.

1628. **Scan Time Reduction in Coronary MRA by Simultaneous Acquisition of Two 3D Stacks.**
D. Manke, P. Börnert, K. Nehrke and O. Dössel.
Universität Karlsruhe, Karlsruhe, Germany and Philips Research, Hamburg, Germany.
Northwestern University and Bracco Diagnostics, Chicago, IL, USA; Dr. Daniel den Hoed Kliniek, Rotterdam, Netherlands and Siemens Medical Systems, Chicago, IL, USA.

1630. Improving 3D Segmented Echo-Planar Coronary Artery Imaging with Extracellular Contrast Agents.
Northwestern University, Chicago, IL, USA; Dr. Daniel den Hoed Kliniek, Rotterdam, Netherlands and Siemens Medical Systems, Chicago, IL, USA.

Barnes-Jewish Hospital, St. Louis, MO, USA and Nycomed Amersham Imaging, Oslo, Norway.

1632. Spiral Coronary Angiography Using the Intravascular Contrast Agent NC100150 Injection.
Aarhus University Hospital, Aarhus, Denmark; Nycomed Imaging A/S, Oslo, Norway and Philips Research Laboratory, Hamburg, Germany.

J. Zheng, F.M. Cavagna, J.P. Finn, F. Maggioni, G. Laub, O. Simonetti and D. Li.
Bracco, S.p.A, Milan, Italy and Northwestern University and Siemens Medical Systems, Chicago, IL, USA.

Cardiac MR Spectroscopy: Animal Models and Extracts
Hall C
Thursday: 13:30 – 15:30

K. Thompson, R.T. Thompson, J. Sykes and G. Wisenberg.

1635. Comparison of Isoflurane and Propofol Anaesthesia on Cardiac Function and pH During Ischaemia/Reperfusion.
K. Thompson, R.T. Thompson, J. Sykes and G. Wisenberg.

1636. Fatty Acid Oxidation In Rats Fed with Etomoxir Enriched Diet.
University of Texas, Southwestern Medical Center, Dallas, TX, USA.

1637. Cardiac Substrate Oxidation After Acute Carnitine Palmitoyl Transferase-I Suppression.
P.E. Meyer, R.Y. Chao, J.B. Patel, J.D. McGarry and M.E. Jessen.
University of Texas Southwestern Medical Center, Dallas, TX, USA.

Biocenter of the University, University Hospital and F. Hoffman-La Roche, Basel, Switzerland.
Poster Sessions

1639. **Mitochondrial Creatine Kinase is Critically Necessary to Maintain a Normal Profile of Myocardial High-Energy Phosphates.**
M. Spindler, R. Niebler, M. Horn, T. Lanz, K. Schnackerz and S. Neubauer.
University of Wuerzburg, Wuerzburg, Germany.

1640. **Simultaneous Measurement of Tissue Energetics and Oxygenation in Pig Hearts Using \(^{31}\)P NMR and Optical Spectroscopy.**
National Research Council, Winnipeg, Manitoba, Canada.

1641. **Na\(^+\)-K\(^+\) ATPase Activity in Pyruvate-Reperfused Isolated Rat Hearts: No Enhancement by Pyruvate-Dehydrogenase Activation.**
J.G. van Emous, M.G.J. Nederhoff, T.J.C. Ruigrok and C.J.A. van Echteld.
University Medical Center and Interuniversity Cardiology Institute (ICIN), Utrecht, The Netherlands.

1642. **\(^{13}\)C MRS Metabolic Studies of Isolated Superfused Heart Mitochondria.**
N.M. Doliba, A.M. Babsky, S. Wehrli, N.M. Doliba, A. Savchenko and M.D. Osbakken.
University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, USA and Covance, Princeton, NJ, USA.

1643. **Metabolic Flux Measurements by \(^{13}\)C NMR in Isolated Rat Heart Mitochondria.**
S. Kamzolova, D. Varadarajan, A.D. Sherry, F.M.H. Jeffrey and C.R. Malloy.
University of Texas, Southwestern Medical Center, Dallas TX, USA and University of Texas at Dallas, Richardson, TX, USA.

1644. **Characterisation of Atherosclerotic Intima Using Magic Angle Spinning (MAS) MRS.**
University of Sydney, Sydney, Australia.

Human Cardiac MR Spectroscopy and Sodium MR Imaging

Hall C
Thursday: 13:30 – 15:30

1645. **Abnormal in vivo Cardiac Energetics in Individuals Harbouring the Mitochondrial DNA A3243G Mutation.**
University of Oxford, Oxford, UK; University of Bologna, Bologna, Italy and University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK.

1646. **Human Cardiac \(^{31}\)P MRS During an Oral Glucose Tolerance Test.**
Max Grundig Clinic, Bühl, Germany and University of Tübingen, Tübingen, Germany.

1647. **Detection of Alterations in the Myocardial High Energy Phosphate Metabolism in Patients with Insulin Dependent Diabetes Mellitus (IDDM).**
M. Schocke, B. Metzler, C. Wolf, P. Steinboeck, W. Judmaier, M. Lechleitner, O. Pachinger and P. Lukas.
University of Innsbruck, Innsbruck, Austria.

1648. **Patients with Familial and Nonfamilial Hypertrophic Cardiomyopathy Show Different Cardiac Energetics.**
Max Grundig Clinic, Bühl, Germany and University of Tübingen, Tübingen, Germany.
Poster Sessions

Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

1650. Cardiac Phosphorus-31 Spectroscopy of Women with Suspected Microvascular Dysfunction.
University of Florida and VA Medical Center, Gainesville, FL, USA and University of Alabama, Birmingham, AL, USA.

1651. Time Resolved Sodium Imaging of the Human Heart at 1.5 T.
R. Jeréčić, M. Bock, H-J. Zabel and L.R. Schad.
Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.

Characterizing Vessel Wall & Plaque

Hall C
Tuesday: 13:30 – 15:30

1652. Measurements of In Vivo Vessel Wall Motion and Strain with Cine Phase Contrast MRI.
Stanford University, Stanford, CA, USA.

1653. Wall Shear Stress in Major Cerebral Arteries as Function of Age Measured by Cine Magnetic Resonance Imaging.
University of Illinois at Chicago, Chicago, IL USA.

1654. Comparison of Computerized Fluid Dynamics and High Resolution Phase Contrast MRI for Wall Shear Stress Estimation In Vivo. Preliminary Results.
Aarhus University Hospital, Aarhus, Denmark and University of Leeds, Leeds, UK.

1655. Determination of Wall Shear Stress and Subpixel Lumen Area in the Right Coronary Arteries Using MRI.
S. Oyre and E.M. Pedersen.
Aarhus University Hospital, Aarhus, Denmark.

1656. 250 μm Resolution MRI Wall Shear Stress Measurements In Vivo Shows Difference Between Femoral, Brachial and Carotid Artery Wall Shear Stresses.
Aarhus University Hospital, Aarhus, Denmark.

1657. In-vivo and in-vitro MRI of the Carotid Artery Wall Using a Small Diameter Surface Coil.
University Hospital of Maastricht, Maastricht, The Netherlands.

1658. Simultaneous MR Imaging of the Vascular Lumen and Wall.
C. Rofe, J.H. Rapp and D. Saloner.
VA Medical Center, San Francisco, CA, USA.

1659. Arterial Vessel Wall Thickness Measurement Based on Black Blood MRI.
X. Kang, D. Xu and C. Yuan.
University of Washington, Seattle, WA, USA.
1660. **Assessment of Endothelial Function; A Comparison between a New MRI Based Method and the Established Ultrasound Method.**
H. Flaagoy, M.S. Hansen, S. Oyre, K.E. Sorensen and E.M. Pedersen.
Aarhus University Hospital, Aarhus, Denmark.

1661. **A Framework for Assessing the Accuracy of Segmented MR Images of Atherosclerotic Plaque.**
S. Clarke, B. Rutt, S. Lownie, R. Hammond and J.R. Mitchell.
University of Western Ontario, The John P. Robarts Research Institute and London Health Science Centre, London, Ontario, Canada.

1662. **Magnetic Resonance Angiography of Thoracic Aortic Atherosclerosis in Homozygous Familial Hypercholesterolemia.**
National Institutes of Health, Bethesda, MD, USA.

1663. **High Resolution MRI of Carotid Atherosclerosis: Precision Analysis of Arterial Lumen and Wall Area Measurement.**
X. Kang, N.L. Polissar, C. Han and C. Yuan.
University of Washington and The Mountain-Whisper-Light Statistical Consulting, Seattle, WA, USA.

1664. **3D Gradient Echo Imaging of Atherosclerotic Plaque at Human Carotid Artery: Quantitative Evaluation of Fibrous Cap.**
D. Xu, M.S. Ferguson, T.S. Hatsukami, J-N. Hwang and C. Yuan.
University of Washington, Seattle, WA, USA.

1665. **In Vivo Identification of Lipid Cores in Advanced Carotid Atherosclerotic Plaques by High Resolution MR Imaging.**
L.M. Mitumori, C. Yuan, M.S. Ferguson and T.S. Hatsukami.
University of Washington, Seattle, WA, USA.

1666. **A Novel True FISP Technique for Visualizing Vascular Plaque.**
E. Washington, O. Simonetti, A. Chiou and J.P. Finn.
Northwestern University and Medical School and Siemens Medical Systems, Chicago, IL, USA.

1667. **Atherosclerotic Lesion Mapping by MR Imaging on Watanabe Rabbits: Influence of Lipid-Rich Diet.**
L. Chaabane, E. Canet, F. Contard, D. Guerrier, A. Brigue and P. Douek.
UCB-CPE, Villeurbanne, France; Hôpital Cardiologique, Lyon, France and Lipha SA, Lyon, France.

Flow Quantification

Hall C
Tuesday: 13:30 – 15:30

1668. **Reducing Errors Due to Partial-Volume Effects and Noise in Pressure Maps Calculated from MR Velocity Data.**
Brown University, Providence, RI, USA and City of Hope National Medical Center, Duarte, CA, USA.

1669. **Quantitative Analysis of PC MRI Velocity Maps for Pulsatile Flow in Cylindrical Vessels.**
University of Edinburgh, Western General Hospital, Edinburgh, UK.

1670. **Pulsatility "Doppler" MR: A New Source of Contrast in EPI Sequences.**
D.W. McRobbie, C.N. Guy and R.A. Quest.
The Hammersmith Hospitals NHS Trust and Imperial College, London, UK.
Stanford University, Stanford, CA, USA and Mount Sinai School of Medicine, New York, NY, USA.

1672. A New Method for Flow Quantification With An Active MRI Stent (AMRIS) in a Phantom Study.
M. Busch, F. Toennissen, R. Wetzler, T. Bertsch and A. Melzer.
Mediport Simag GmbH, Berlin, Germany; University of Applied Science FH Gelsenkirchen, Gelsenkirchen, Germany and Institute of Diagnostic and International Radiology, Mülheim/Ruhr, Germany.

1673. One-Dimensional Particle Tracking of Fluid Motion Using Tagging.
University of Toronto, Toronto, Ontario, Canada.

1674. Spatial-Resolution Requirements for Flow Quantification Using Fourier Velocity Encoding.
C-M. Tsai, E.W. Olcott and D.G. Nishimura.
Stanford University, Stanford, CA, USA.

1675. A New Method of Quantitating Arterial Spin Tagging Perfusion Images.
S.D. Keilholz-George and S.S. Berr.
University of Virginia, Charlottesville, VA, USA.

1676. Motion Adapted Gating with Partial Averaging for Quantification of Coronary Sinus Flow Reserve in Patients with Aortic Regurgitation.
University and ETH Zurich and University Hospital, Zurich, Switzerland.

1677. Ultra-Fast MRI to Quantitate Pulmonary Regurgitation and Biventricular Function during Physical Exercise in Corrected Tetralogy of Fallot Patients.
Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands and Leiden University Medical Center, Leiden, The Netherlands.

1678. The Significance of Net CSF Flow at the Cerebral Aqueduct: A Cine Phase-Contrast Study.
M-Y. Chen, T-Y. Huang, C-Y. Chen and H-W. Chung.
National Taiwan University, Taipei, Taiwan; Yuan-Pei Technical College, Hsin-Chu, Taiwan and Tri-Service General Hospital, Taipei, Taiwan, ROC.

1679. Comparison of Two Ways of Measuring Cerebrovascular Reactivity.
Leiden University Medical Center, Leiden, The Netherlands.

Aarhus University Hospital, Aarhus, Denmark.

Motion & Artifacts: Field Issues
Hall C
Monday: 14:00 – 16:00

1681. Dielectric Resonance in Ultra High Field MRI.
The Ohio State University, Columbus, OH, USA.
1682. B$_1$ Field Distribution in UHFMRI.
 A. Kangarlu, B. Baertlein, R. Lee and P-M. L. Robitaille.
 The Ohio State University, Columbus, OH, USA.

1683. An Analysis of Macroscopic Susceptibility in Ultra High Field MRI.
 A.M. Abduljalil and P-M. L. Robitaille.
 The Ohio State University, Columbus, OH, USA.

1684. T$_2^*$-Weighted Human Brain Imaging With the GESEPI at 7.0 Tesla.
 The Pennsylvania State University College of Medicine, Hershey, PA, USA and University of Minnesota, Minneapolis, MN, USA.

1685. SVD Regularization Algorithm for Improved High-Order Shimming.
 Stanford University, Stanford, CA, USA.

1686. A Comparison of the Efficacy of Z-Shimming Techniques.
 G. Johnson, Y. Zaim Wadghiri and D.H. Turnbull.
 New York University School of Medicine, New York, NY, USA.

1687. Effects of Maxwell Terms on Reference Scans.
 X.J. Zhou, J.K. Maier and S.J. Huff.
 M.D. Anderson Cancer Center, Houston, TX, USA and General Electric Medical Systems, Milwaukee, WI, USA.

1688. Phantom System To Quantify and Map Gradient Induced Distortions in MR Images of the Pelvis.
 D.J. Finnigan, S.F. Tanner, L. Moore, D. Dearnaley and M.O. Leach.
 The Institute of Cancer Research & The Royal Marsden NHS Trust, Sutton, Surrey, UK and Leeds General Infirmary, Leeds, UK.

Motion & Artifacts: Other
Hall C
Monday: 14:00 – 16:00

1689. Robust Multi-Contrast Adaptive Imaging with Line Scan.
 Brigham and Women's Hospital Harvard, Medical School, Boston, MA, USA.

1690. FLAIR MRI Contrast Optimization in Patients with High CSF Blood or Protein Content.
 M. Bock and M. Essig.
 Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Germany.

 S. Chavez and Q-S. Xiang.
 University of British Columbia, Vancouver, BC, Canada.

1692. A Novel Approach to Motion Compensation on the Slice-Selection Axis for SE-GMN Sequences.
 University of Connecticut Health Center, Farmington, CT, USA and University of Missouri-Columbia, Columbia, MO, USA.
1693. **Ultrafast Technique for Correction of Translational and Rotational Motion in Projection Reconstruction MRI: COBALT.**

H.K. Song and L. Dougherty.

University of Pennsylvania Medical Center, Philadelphia, PA, USA.

1694. **Movement Correction of the Kidney in Dynamic MRI Scans Using FFT Phase Difference Decoding.**

Eindhoven University of Technology, Eindhoven, the Netherlands and University Hospital Maastricht and Maastricht University, Maastricht, the Netherlands.

1695. **A Temporal Frequency Analysis of Dynamic MRI Techniques.**

Y. Wu and A.L. Alexander.

University of Utah, Salt Lake City, UT, USA.

1696. **Motion-Compensated Keyhole/RIGR Imaging.**

Z-P. Liang, X. Ji and C.P. Hess.

University of Illinois at Urbana-Champaign, Urbana, IL, USA.

1697. **Limitations on the Spatial and Temporal Resolution of In-Plane Motion During Rapid MR Imaging.**

J.A. Derbyshire.

GE Medical Systems, Waukesha, WI, USA.

Motion and Artifacts: Cardiovascular and Respiratory

Hall C

Monday: 14:00 – 16:00

1698. **High Speed Respiratory Navigation Applied to MR Imaging of the Living Mouse.**

J. Ruff, F. Wiesmann and A. Haase.

Universität Würzburg, Würzburg, Germany.

1699. **A Comparison of Respiratory Compensation Techniques As Applied to MR Oximetry.**

J.A. Stainsby, T.S. Sachs, A. Chiu and G.A. Wright.

University of Toronto, Toronto, Ontario, Canada and Stanford University, Stanford, CA, USA.

1700. **The Lever-Coil: A Simple, Inexpensive Sensor for Respiratory Motion in MRI Experiments.**

K.W. Fishbein and R.G.S. Spencer.

National Institute on Aging, Baltimore, MD, USA.

1701. **Measurement of Heart Position Consistency during Breath-Held Scans.**

Stanford University, Stanford, CA, USA.

1702. **Automated Registration of Dynamic Images for Myocardial Perfusion Quantification.**

J-P. Vallée, L. Bidaut and F. Lazeyras.

Geneva University Hospital, Geneva, Switzerland.

1703. **Artifact-Free MR Fluoroscopic Coronary Image Combination With the Correlation Coefficient Technique.**

University of Toronto, Toronto, Ontario, Canada and Stanford University, Stanford, CA, USA.
Poster Sessions

1704. Application of a Novel Motion Resistant Phase Ordering Technique to Segmented 2D Imaging of the Heart.
P. Jhooti, J. Keegan, P.D. Gatehouse, N. Bunce and D.N. Firmin.
Royal Brompton Hospital and Imperial College, London, UK.

1705. View-Ordering Methods for Suppression of Cardiac Motion Artifacts in Coronary MRA.
T. Nguyen, G. Ding, R. Watts and Y. Wang.
Weill Medical College of Cornell University, New York, NY, USA.

1706. Real-Time Echo Planar Imaging of Left Ventricular Function - Faster is Better.
University of Zurich and ETH Zurich, Zurich, Switzerland and Philips Research Laboratories, Hamburg, Germany.

1707. Reduction of Flow Artifacts in 2D TOF Angiography by Preconditioning the Inflow Signal with a V-Equalizer.
K.J. Jung and S.H. Park.

Motion & Artifacts: EPI

Hall C
Monday: 14:00 – 16:00

1708. A Strategy to Decrease Motion Artifacts in Diffusion Weighted Imaging with Multiple-shot Spiral Imaging to Increase Sensitivity.
A. Chu, J.G. Pipe and J.L. Evelhoch.
Wayne State University, Detroit, MI, USA and Barrows Neurological Institute, Phoenix, AZ, USA.

1709. Distortion Correction for Diffusion Weighted Echo Planar Imaging.
N-K. Chen and A.M. Wyrwicz.
Northwestern University, Evanston, IL, USA.

1710. Correction of Gross Distortion Caused by Unbalanced Alternating Gradient In Echo Planar Imaging.
J-Y. Chiou and O. Nalcioglu.
University of California, Irvine, CA, USA.

1711. A Simple Method to Correct Off-Resonance Related Distortion In Echo Planar Imaging.
J-Y. Chiou and O. Nalcioglu.
University of California, Irvine, CA, USA.

1712. Geometrical Distortion Correction in EPI Using Two Images with Orthogonal Phase-Encoding Directions.
D. Cordes, K. Arfanakis, V. Haughton and M.E. Meyerand.
University of Wisconsin, Madison, WI, USA.

1713. Single-Shot and Segmented EPI Ghost Artifacts Removal with Two-Dimensional Phase Correction.
N-K. Chen and A.M. Wyrwicz.
Northwestern University, Evanston, IL, USA.

1714. Point Spread Function Artefacts from In-Plane Constant and Pulsatile Flow in EPI: Implications for Pulsatility Imaging.
C.N. Guy and D.W. McRobbie.
Charing Cross Hospital, Imperial College, London UK.
1715. Head Motion Characterization During fMRI Motor Tasks.
Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada.

J. Baudewig, W. Paulus and J. Frahm.
Biomedizinische NMR Forschungs GmbH and Universitét Göttingen, Göttingen, Germany.

1717. Exploratory Data Analysis Reveals Spatio-Temporal Structure of Null fMRI Data.
R. Baumgartner, L. Ryner, R. Somorjai and R. Summers.
National Research Council Canada, Winnipeg, Manitoba, Canada.

New Sequences and Reconstruction Methods
Hall C
Wednesday: 13:30 – 15:30

1718. Method for Phase Contrast Reconstruction for Partial Fourier Acquisitions.
GE Medical Systems, Milwaukee, WI, USA.

1719. An Array That Exploits Phase for SENSE Imaging.
J.V. Hajnal, D.J. Larkman and D.J. Herlihy.
Imperial College School of Medicine, Hammersmith Hospital, London, UK.

1720. Sub-Sampled Phased-Array MRI Reconstruction Via Coherent Spatial Nulling.
D.O. Walsh and A.F. Gmitro.
Vista Clara Inc. and University of Arizona, Tucson, AZ, USA.

1721. Extending the Composite Field of View in Phased-Array MRI.
D.O. Walsh and A.F. Gmitro.
Vista Clara Inc., and University of Arizona, Tucson, AZ, USA.

1722. Radial Acquisition of Data GRASE (RAD-GRASE).
University of Arizona, Tucson, AZ, USA.

1723. Sparse 3D Radial Scanning and Reconstruction.
Delft University of Technology, Delft, The Netherlands and Université Lyon I-CPE, Lyon, France.

1724. Effective Echo Time in the Projection-Type Fast Spin Echo Imaging.
Kwangwoon University, Seoul, Korea.

H-P. Fautz, K. Scheffler and J. Hennig.
University of Freiburg, Freiburg, Germany.

1726. Incremental Table Motion for Increased Volume Coverage.
J.H. Brittain, R.A. McCann and J.M. Pauly.
GE Medical Systems, Milwaukee, WI, USA and Stanford University, Stanford, CA, USA.
D. Rosenfeld.
GE Medical Systems Israel, Tirat Carmel, Israel.

1728. Reconstruction MR Images from Undersampled Data: Data Weighting Considerations.
J.G. Pipe.
St. Joseph's Hospital, Phoenix, AZ, USA.

University of Utah, Salt Lake City, UT, USA.

S.K. Nagle and D.N. Levin.
University of Chicago, Chicago, IL, USA.

1731. Analytic Reconstruction of the PERL Transform.
M.I. Hrovat and S. Patz.
Mirtech Inc. and Brigham & Women's Hospital, Boston, MA, USA.

1732. Power Spectral Density Imaging to Expand the Nyquist Limit on Phantom with Local Temporal Fluctuation.
Medical College of Wisconsin, Milwaukee, WI, USA.

1733. Acquisition of MR Elastography Measurements Using Steady State Motion.
Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA and Dartmouth College, Hanover, NH, USA.

1734. Three Dimensional Reconstructive Elastographic Imaging.
Dartmouth College, Hanover, NH, USA.

1735. Use of Constraints to Produce Plane Strain Conditions for MR Elastography.
J. Bishop, A. Samani, J. Sciarretta and D.B. Plewes.
University of Toronto, Toronto, Ontario, Canada.

1736. Simultaneous Water and Fat Dual-Echo Spin Echo Imaging.
E. Kwok, S.M.S. Totterman and J. Zhong.
University of Rochester Medical Center, Rochester, NY, USA.

J.A d'Arcy, D.J. Collins, T. Prock, P.S. Murphy, I.J. Rowland and M.O. Leach.
Institute of Cancer Research, Sutton, Surrey, UK.

1738. In Vivo Triple-Quantum-Filtered Sodium MRI: Signal Dependence on the RF Pulse-Widths.
I. Hancu, J.R.C. van der Maarel, G.X. Shen and F.E. Boada.
University of Pittsburgh, Pittsburgh, PA, USA and Leiden University, Leiden, Netherlands.

1739. Fast Spin Echo Imaging of Human Head at 4 Tesla.
J.S. Gati, R.S. Menon and B.K. Rutt.
The John P. Robarts Research Institute, London, Ontario, Canada.

1740. Flipped Cycled Main Field for Optimized Overhauser Imaging.
Philips Research Laboratories, Hamburg, Germany.
1741. Modular Hybrid Imaging with FLASH/EPI-Techniques.
P. M. Jakob, C. Hillenbrand, D. Hahn and A. Haase.
Universität Würzburg, Würzburg, Germany.

1742. Assessment of Spatial Resolution Effects in MR-CAT Scan.
C. Hillenbrand, D. Hahn, A. Haase and P. M. Jakob.
Universität Würzburg, Würzburg, Germany.

1743. Use of k-Space Reordered FLAIR with a Non-Selective Inversion Pulse to Reduce Flow Artefacts and Provide Uniform Tissue Contrast.
Imperial College School of Medicine, Hammersmith Hospital, London, UK and Picker International, Cleveland, OH, USA.

1744. Optimization of 3D MP-RAGE Sequences for Structural Brain Imaging.
Institute of Neurology, London, UK.

1745. Interleaved Inversion Recovery Gradient-Recalled EPI.
V. Roopchansingh, S. J. Li and A. Jesmanowicz.
Medical College of Wisconsin, Milwaukee, WI, USA.

1746. Partial k-space Acquisition for Isotropic PE 3D FSE.
E. G. Kholmovski, A. L. Alexander and D. L. Parker.
University of Utah, Salt Lake City, UT, USA.

C. L. Hoad, A. L. Martel, R. Kerslake and J. Webb.
University Hospital, Queen’s Medical Centre, Nottingham, UK.

1748. A Pulse Sequence for Liver Magnetic Susceptibility Quantitation by Vessel Imaging for Iron Overload Assessment.
Z. J. Wang and O. P. Simonetti.
The Children’s Hospital of Philadelphia, Philadelphia, PA, USA and Siemens Medical Systems, Inc., Chicago, IL, USA.

D. W. McRobbie, R. A. Quest and S. Pritchard.
The Hammersmith Hospital NHS Trust, Charing Cross Hospital, London, UK.

Registration, Segmentation, and Tissue Characterization
Hall C
Wednesday: 13:30 – 15:30

1750. Automatic Registration of Volumes with Large MS Lesion Load Change.
University of British Columbia, Vancouver, British Columbia, Canada.

1751. FFT-Based Subpixel MRI Image Registration and Its Application in fMRI.
H. Tang, G. M. Perera, R. L. DeLa Paz, Q. Y. Ma and E. X. Wu.
Columbia University, New York, NY, USA.
Poster Sessions

1752. Mapping the Results of Rigid Body Registrations for Multiple, Overlapping Spatially Separate Regions of Serially Acquired 3D MR Images of the Human Head.
M.D. Coley, R.E. Ansorge, L.D. Hall and T.A. Carpenter.
University of Cambridge, Cambridge, UK.

1753. T1-Based Partial Volume Segmentation of Brain Tissue with a Surface Coil.
G.F. Mason.
Yale University School of Medicine, New Haven, CT, USA.

1754. A Simple Efficient Algorithm for Brain Segmentation on T1-Weighted Images Employing Edge Detection.
M-L. Wu, W-C. Wu, H-W. Chung and C-Y. Chen.
National Taiwan University and Tri-Service General Hospital, Taipei, Taiwan, ROC.

B.B. Biswal and A.P. Pathak.
Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA.

1756. Multiresolution MRI Brain Image Representation and Segmentation.
Columbia University, New York, NY, USA.

L. Stawiarz and H. Link.
Karolinska Institute, Huddinge University Hospital, Huddinge, Sweden and Karolinska Hospital, Stockholm, Sweden.

1758. Chemotherapeutic Effects on Brain Tissue Volumes Measured by Segmentation and Classification.
St. Jude Children’s Research Hospital, Memphis, TN, USA.

1759. Underdetermined Problems of Tissue Fraction Quantification in MS Patients.
University of British Columbia, Vancouver, British Columbia, Canada.

University College London and Guy’s Hospital, King's College London, London, UK.

University of Antwerp & Ghent, Antwerp, Belgium.

Data Correction Methods

Hall C
Wednesday: 13:30 – 15:30

1762. A Renormalization Method for Inhomogeneity Correction of MRI Data.
D. Chen, L. Li and Z. Liang.
State University of New York, Stony Brook, NY, USA.
Poster Sessions

1763. **Correction of Spatial Coil Intensity Profile Employing Registered Difference, Ratio and Edge Enhanced Images.**
Hammersmith Hospital, London, UK.

1764. **Real Time Motion Detection and Correction in k-Space Images.**
M.E. Alexander and P. Zhilkin.
National Research Council Canada, Winnipeg, Manitoba, Canada.

1765. **Correction of Local Deformations in fMRI by 3D Non-Linear Warping in Map-Slice-to-Volume Approach.**
University of Michigan Medical Center, Ann Arbor, MI, USA.

1766. **Sub-Voxel Unwarping of Spin Echo EPI to Conventional Anatomical MRI.**
C. Studholme, R.T. Constable and J.S. Duncan.
Yale University School of Medicine, New Haven, CT, USA.

1767. **Off-Resonance Correction with a Segmented and Density Compensated Linear Time Map.**
M. Rosenblitt, J. A. Akel and P. Irarrázaval.
Pontificia Universidad Católica de Chile, Santiago, Chile.

1768. **Improved Sensitivity and Speed for Localized, Subsecond Shimming Without a Reference Scan.**
R. Gruetter and I. Tkáč.
University of Minnesota, Minneapolis, MN, USA.

1769. **Alternative Reconstruction Method for 2DFT Data in the Presence of Off-Resonance.**
J.A. Akel and P. Irarrázaval.
Pontificia Universidad Católica de Chile, Santiago, Chile.

1770. **A Slice Encoded Reference Scan for 3D-PRESTO.**
H. Hoogduin, P. van Gelderen, J. van de Brink and N. Ramsey.
University Medical Center, Utrecht, The Netherlands; National Institutes of Health Bethesda, MD, USA and Philips Medical Systems, Best, The Netherlands.

1771. **Optimization and Calibration of EPI Raw Data Reconstruction Parameters to Minimize Image Ghosting Using Image-Based Corrections.**
D.H. Wu and W. Dannels.
Picker International, Cleveland, OH, USA.

1772. **K-space Synthesis for MR Imaging in the Presence of Gradient Field Nonlinearity.**
Y. Zhu.
GE Corporate Research & Development, Schenectady, NY, USA.

1773. **Harmonic Function Characteristics of Magnetic Field and Confirmation with MR Phase Imaging.**
L. Li and J.S. Leigh.
University of Pennsylvania, Philadelphia, PA, USA.

1774. **A Bayesian Approach to Noise Removal in Dynamic MRI of Lung.**
G. Torheim, G. Sebastiani, T. Amundsen, P.A. Rinck and O. Haraldseth.
Norwegian University of Science and Technology, Trondheim, Norway; Istituto per le Applicazioni del Calcolo, C.N.R., Rome, Italy and Université de Mons-Hainaut, Mons, Belgium.

1775. **Removal of Correlated Noise from MR Images Using Wavelet Domain Filters.**
National Research Council Canada, Winnipeg, Manitoba, Canada and University of Vienna, Vienna, Austria.
1776. **Optimal Complex Wavelet Bases for Localized Encoding in Magnetic Resonance Imaging.**
E.X. Wu, J. Baude, J.M. Lina and A.F. Laine.
Columbia University, New York, NY, USA and University of Montreal, Montreal, Quebec, Canada.

1777. **Adaptive Template Filtering Without Boundary Artifact.**
Kwangwoon University, Catholic University Medical College, Medison MRI Research Center and Korea University, Seoul, Korea.

1778. **Use of the Adaptive Line Enhancement Filter for SNR Improvement in NMR Spectroscopy.**
S. Pajevic, G.H. Weiss, K.W. Fishbein and R.G.S. Spencer.
National Institutes of Health, Bethesda, MD USA and National Institute on Aging, Baltimore, MD, USA.

1779. **Impact of Image Processing Operations on MR Noise Distributions.**
P. Summers, A.C.S. Chung and J.A. Noble.
King’s College, London, UK and Oxford University, Oxford, UK.

1780. **Iterative Sharpening of the Resolution in Magnetic Resonance Imaging.**
Indian Institute of Technology, Kanpur, India and Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.

MR Angiography

Hall C
Wednesday: 13:30 – 15:30

1781. **An Inversion-Prepped, ECG-Gated, Complex-Subtraction Method for Determining the Arrival Time of a Contrast Agent for CE MRA.**
University of Wisconsin, Madison, WI, USA.

1782. **Multiple Transit Time Detection by 3D Test-Bolus Scan with 1ml Gd-Injection.**
Keio University and GE Yokogawa Medical Systems, Ltd., Tokyo, Japan.

1783. **Experimental Contrast Curve Design for the Evaluation of Vessel Contrast and Artifact in Three Dimensional Contrast-Enhanced MR Angiography.**
O. Al-Kwifi and A.H. Wilman.
University of Alberta, Edmonton, Alberta, Canada.

1784. **3D MR Angiography with Nonselective Excitation.**
O. Heid.
Siemens AG, Erlangen, Germany.

1785. **Background Suppression for Two-Dimensional Contrast-Enhanced MRA.**
C. Bos, C.J.G. Bakker and M.A. Viergever.
University Medical Center, Utrecht, Netherlands.

1786. **MRI with Contrast Enhancement May Detect Neovasculature in Atherosclerotic Plaque.**
C. Yuan, M.S. Ferguson, K.R. Maravilla, J.H. Maki and T.S. Hatsukami.
University of Washington, Seattle, WA, USA.
1787. Resolution Requirements for Grading Stenoses in 3D CE-MRA.
G.J. Wilson, D. Haynor and J.H. Maki.
Puget Sound VA Medical Center and University of Washington, Seattle, WA, USA.

M. Amann, F. Floemer, M. Bock, S.O. Schoenberg and L.R. Schad.
Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Germany.

Kyungpook National University, Taegu, Korea.

J. Beland, J. Carr, G. Laub and J.P. Finn.
Northwestern University Medical School and Siemens Medical Systems, Chicago, IL, USA.

1791. High-Resolution Carotid Artery MRA; Comparison with Fast Dynamic Acquisition.
Uppsala University Hospital, Uppsala, Sweden and Nycomed Imaging A/S, Oslo, Norway.

1792. The Effect of Injection Profiles on Carotid Artery CE-MRA.
VA Medical Center, San Francisco, CA, USA and University of California, Berkeley, CA, USA.

1793. The Effect of Injection Rate on Contrast Enhanced Peripheral MRA.
University of Wisconsin, Madison, WI, USA and Indiana University, Indianapolis, IN, USA.

1794. Comparison of TOF MRA and CE MRA with 3-D X-ray Angiography: an In Vitro Study.
University of Western Ontario and John P. Robarts Research Institute, London, Ontario., Canada.

1795. Contrast-enhanced 2D MR-DSA of the Thoracic Lesion.
Nara Medical University, Nara, Japan and Siemens-Asahi Medical Technologies Ltd., Tokyo, Japan.

University of Technology, Aachen, Germany and Philips Research Laboratories, Hamburg, Germany.

Hamamatsu University School of Medicine, Hamamatsu, Japan and GE Yokogawa Medical Systems, Tokyo, Japan.

1798. MR Pulmonary Angiography Without Contrast Materials: Separate Demonstration of the Pulmonary Arteries and Veins.
St. Marianna University, Kawasaki, Japan and Toshiba Medical System, Tokyo, Japan.

1799. Simulation of Optimized Time-Resolved Segmented Elliptical-Centric 3D TRICKS for Abdominal MRA.
O. Wieben, W.F. Block and C.A. Mistretta.
University of Wisconsin-Madison, Madison, WI, USA.
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1809</td>
<td>Segmentation of Arteries from Veins in Contrast-Enhanced 3-D Magnetic Resonance Angiography of the Lower Extremities.</td>
<td>J. Svensson, P. Leander, F. Ståhlberg, C. Thomsen, S. Sjöberg and L.E. Olsson.</td>
<td>Malmö University Hospital, Malmö, Sweden; Lund University Hospital, Lund, Sweden and Copenhagen University Hospital, Copenhagen, Denmark.</td>
</tr>
</tbody>
</table>
1812. High-Resolution Gd-Enhanced 3D Elliptical Centric MRA of the Infrapopliteal Arteries: Lessons for Improving Bolus-Chase Multi-Station Peripheral MRA.
Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, MD, USA and GE Medical Systems, Milwaukee, WI, USA.

1813. Bolus-Chasing CEMRA of the Peripheral Artery System: Comparison with I.A. DSA in 50 Patients with Peripheral Artery Occlusive Disease.
J.C. Steffens, J. Brossmann, B. Oberscheid and M. Heller.
Christian-Albrechts-Universität, Kiel, Germany.

1814. Toward an Objective Measure of Image Quality for Peripheral Vascular MRA.
C.A. Webster, N. Merchant, D.S. Kucey and G.A. Wright.
University of Toronto, Sunnybrook and Women's College Health Science Centre, Toronto, Ontario, Canada.

R.N. Low, M.O. Senac Jr., L.F. Eichenfield, S.F. Freidlander and B.B. Cunningham.
Sharp and Children's MRI Center and Children's Hospital, San Diego, CA, USA.

University Medical Center, Utrecht, Netherlands.

Leeds General Infirmary, Leeds, UK.

1818. Phase II Studies of Gadobenate Dimeglumine (MultiHance) for MR Angiography.
German Cancer Research Center (dkfz) Heidelberg, Germany; The Ohio State University, Columbus, OH, USA and Bracco-Byk Gulden, Konstanz, Germany.

1819. Dose Response Analysis of a Superparamagnetic Contrast Agent for MR Angiography.
German Cancer Research Center (dkfz) and University of Heidelberg, Heidelberg, Germany; The Ohio State University, Columbus, OH, USA and Nycomed-Amersham, Oslo, Norway.

1820. MRI Structure Analysis of Thrombi in the Superficial Femoral Artery Before Thrombolytic Treatment.
M. Kozak, A. Blinc, I. Ser'a, U. Mikac and M. Šurlan.
University of Ljubljana Medical Center, Ljubljana, Slovenia.

1821. Improved MRA Using Fat-Suppressed MTC Pulse and SLINKY Acquisition.
Shimadzu Corporation, Kyoto, Japan and Picker International Inc., Highland Heights, OH, USA.

1822. Accuracy of MR Oximetry after Resuscitation with a Hemoglobin-Based Oxygen Carrier.
F.P. Chan, J.S. Jahr, B. Driessen, D.A. Daunt and K.C.P. Li.
Stanford University Medical Center, Stanford, CA, USA; U.C. Davis Medical Center, Davis, CA, USA and University of Pennsylvania, Philadelphia, PA, USA.

1823. EPI-TOF MR-Angiography Has Superior CNR and SNR Compared to Standard FFE-TOF Carotid MR-Angiography.
Aarhus University Hospital, Aarhus, Denmark and Philips Medico, Copenhagen, Denmark.
Poster Sessions

1824. High Resolution MRA with SLINKY and Dedicated Phased Array Coils.
Piker Medical System, Cleveland, OH, USA.

1825. Dual VENC Phase Contrast Angiography for Arterial and Venous Discrimination.
Y. Zhang, T. Foo, V. Ho, H. Marcos, J. Butman and P. Choyke.
National Institutes of Health Bethesda, MD USA; GE Medical Systems, Milwaukee, WI, USA and Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

1826. Artifacts due to Reverse Flow in the Artery and Their Correction in TOF Angiography with Presaturation of the Vein.
K.J. Jung, J.K. Lee and S.T. Chung.

1827. Control of Angular Undersampling Artifacts in Projection-Based Angiography by Iterative Reconstruction.
University of Wisconsin-Madison, Madison, WI, USA.

1828. Flow Relaxographic Angiography.
Brookhaven National Laboratory, Upton, NY, USA and State University of New York, Stony Brook, NY, USA.

1829. Effects of Gradient Moment Nulling in 3D Half-Fourier FSE "Bright Blood" Imaging.
Toshiba, Tochigi, Japan.

1830. Angiographic Study of the Thermoregulatory Function of the Rat Tail.
G. Vanhoutte, M. Verhoye, E. Raman and A. Van der Linden.
University of Antwerp, Antwerp, Belgium.

Spectroscopic Localization and Imaging

Hall C
Monday: 14:00 – 16:00

1831. Fast Spectroscopic Imaging (FSI).
L.N. Ryner and K. Malkoske.
National Research Council of Canada and University of Manitoba, Winnipeg, Manitoba, Canada.

1832. Line Scan Echo Planar Spectroscopic Imaging: Single Slice 2D CSI in Seconds with an Infinite TR.
Brigham and Women's Hospital, Children's Hospital and Harvard Medical School, Boston, MA, USA.

1833. REduced Scan Time Phase Encoded Echo Planar (REST-PEEP) Chemical Shift Imaging.
D.N. Guilfoyle.
Nathan S. Kline Institute, Orangeburg, NY, USA and Albert Einstein College of Medicine, Bronx, NY, USA.

1834. Simultaneous Multi-Slice MR Spectroscopic Imaging Using Modified Hadamard-like Technique.
Veterans General Hospital-Kaohsiung and Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.

1835. Applications of Spiral MRSI Using Surface and Phased-Array Coils.
D.H. Kim, E. Adalsteinsson and D.M. Spielman.
Stanford University, Stanford, CA, USA.
1836. Multislice Spectroscopic Imaging Improvements on Clinical Scanners by Dynamically Switching Individual Shim Settings for Each Slice.
National Institutes of Health, Bethesda, MD, USA.

H. Liu, W. Chen and K. Ugurbil.
University of Minnesota, Minneapolis, MN, USA.

J. Tsao and P.C. Lauterbur.
University of Illinois at Urbana-Champaign, Urbana, IL, USA.

1839. Peak Specific Phase Correction for Automatic Processing of In Vivo Proton SI Data.
X. Zhang, K. Heberlein, S. Sarkar and X. Hu.
University of Minnesota, Minneapolis, MN, USA.

1840. Reliable Detection of Macromolecules in Single Volume 1H Spectra of Human Brain.
University of Tübingen, Tübingen, Germany.

1841. 2D Constrained Reconstruction of Spectroscopic Imaging Data Using Accurate Segmentation of MR Images.
D.T.A. Sellars, A.J. Schwarz and M.O. Leach.
Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, UK.

1842. ROI Tailored k-Space Sampling and a 2D Prolate Spheroidal Wave Function Filter: Reduction of Spectral Contamination in Spectroscopic Imaging.
The Pennsylvania State University College of Medicine, Hershey, PA, USA; Rutgers University, New Brunswick, NJ, USA and Université Catholique de Louvain, Brussels, Belgium.

1843. Reduction of the Truncation Artifact in High-Speed MRSI by Using Linear Prediction Extrapolation and Normalization with the T_2^* Decay Curve.
Hitachi, Ltd., Tokyo, Japan; Hitachi Medical Corporation, Chiba, Japan; Louis Pasteur Center for Medical Research, Kyoto, Japan and Kyoto Prefectural University of Medicine, Kyoto, Japan.

1844. Partial Volume Correction of Spectroscopic Imaging Using a Proportional Grid System.
K. Heberlein, X. Zhang, S. Sarkar and X. Hu.
University of Minnesota, Minneapolis, MN, USA.

B. Lewis, J.W. van der Veen, J. Duyn and J.A. Frank.
National Institutes of Health, Bethesda, MD, USA.

1846. Confidence Images for MR Spectroscopic Imaging.
D. Khetselius, K. Young, B.J. Soher and A.A. Maudsley.
DVA Medical Center, San Francisco, CA, USA.

University of Alberta, Edmonton, Alberta, Canada.
1848. **The Spatial Response Function in SENSE-SI.**
University and ETH Zurich, Zurich, Switzerland.

1849. **Localized Detection of Intracellular Sodium with Shift Reagent Aided 23Na CSI in Isolated Rat Hearts.**
Universität Würzburg, Würzburg, Germany.

1850. **High-Resolution Human Brain 13C - MRS and MRSL.**
Toshiba Medical Systems R&D Center, Otawara, Japan and Soka University, Hachioji, Japan.

1851. **The Response of Choline-containing Compounds to Neoadjuvant Chemotherapy in Human Breast Carcinoma: A Volume Localized In-Vivo Proto MR Spectroscopy Study.**
M. Kumar, O. Coshic, P.K. Julka, G.K. Rath and N.R. Jagannathan.
All India Institute of Medical Sciences, New Delhi, India.

1852. **Monitoring Response of Head & Neck Tumors to Therapy Using In Vivo Localized 31P Decoupled MR Spectroscopy: A Preliminary Study.**
Multi-Institutional Group on MRS Application to Cancer.

1853. **Improved Spatial Resolution in 31P Brain Spectroscopic Imaging at 4.0T: Implications For the Clinical Study of Membrane Metabolism.**
J.E. Jensen, D.J. Drost, P.C. Williamson and R.S. Menon.
Lawson Research Institute, St. Joseph's Health Centre and Robarts Research Institute, London Health Science Centre, and University of Western Ontario, Toronto, Ontario, Canada.

1854. **Proton J-Resolved Spectroscopic Imaging Without Water Suppression. Application to Rat Brain With Tumour.**
G. Hérigault, S. Zoula, A. Ziegler, C. Rémy and M. Décorps.
CHU Grenoble, Grenoble, France.

MR Spectroscopy - Other

Hall C
Monday: 14:00 – 16:00

1855. **Measurement of Oxygen Consumption in Lung Tissue by 13C NMR.**
P.E. Meyer, F.M.H. Jeffrey, M.E. Jessen, R.Y. Chao, J.B. Patel and D.M. Meyer.
University of Texas Southwestern Medical Center, Dallas, TX, USA.

1856. **Multi-Pulse Water Suppression for 1H NMR Spectroscopy of Human Brain.**
I. Tkáč and R. Gruetter.
University of Minnesota, Minneapolis, MN, USA.

1857. **Single-Voxel Short-Echo Time Proton Spectroscopy of Human Brain with Standard Surface Coils.**
V. Mlynárik, S. Gruber, Z. Starčuk, Z. Starčuk, Jr., M. Roden and E. Moser.
University of Vienna Medical School, Vienna, Austria and Academy of Sciences of Czech Republic, Brno, Czech Republic.
1858. **High Resolution Localized Brain 1H Spectroscopy With Multiple Voxel Interleaved STEAM.**
 J. Théberge, D.J. Drost, P.C. Williamson and R.S. Menon.
 Lawson Research Institute, St. Joseph’s Health Centre and Robarts Research Institute, London Health Science Centre and University of Western Ontario, Toronto, Ontario, Canada.

1859. **Is GABA a Strongly Coupled Spin System at 1.5T?**
 University of Alberta, Edmonton, Alberta, Canada.

1860. **A Strategy for MQ GABA Detection at 3.0 ppm with Simultaneous Suppression of Creatine and Macromolecules.**
 J. Shen.
 The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA and New York University School of Medicine, New York, NY, USA.

1861. **Simultaneous Spectral Editing for Lactate and γ-Aminobutyric Acid (GABA) Using Double-Quantum Filtering and PRESS Localization.**
 H. Lei and J. Peeling.
 University of Manitoba, Winnipeg, Manitoba, Canada.

1862. **Preliminary Study on Glutamate and GABA Using in vivo Two-Dimensional (2D) MRS Technique.**
 McLean Hospital, Harvard Medical School, Belmont, MA, USA.

1863. **Detection of Glutathione in the Human Brain In Vivo Without Contamination With GABA and Macromolecules.**
 University and ETH Zurich, Zurich, Switzerland.

1864. **Localized 2D SECSY of Human Brain.**
 N. Binesh, K. Yue and M.A. Thomas.
 University of California, Los Angeles, CA, USA.

1865. **Localized 2D COSY in Human Breast.**
 K. Yue, N. Binesh, M. Raman, N. DeBruhl and M.A. Thomas.
 University of California, Los Angeles, CA, USA.

1866. **Validation of Reliability of Time Domain Based Quantification of Cardiac 31P NMR Spectra.**
 Universität Tübingen, Tübingen, Germany and Max Grundig Clinic, Bühl, Germany.

1867. **Using NOE to Improve Spectral Resolution of 31P MRS Studies In Vivo.**
 G.S. Payne, A. Bifone and M.O. Leach.
 Royal Marsden NHS Trust and Institute of Cancer Research, Sutton, Surrey, UK.

1868. **Unsupervised Chemometric Methods to Automatically Discriminate between 1H-MRSI Spectra in Patients with a Brain Tumor.**
 Nijmegen University and University Hospital Nijmegen, Nijmegen, The Netherlands.

1869. **Efficient Numerical Modeling of Metabolites in 1H MRS Using Density Matrices in an Irreducible Representation.**
 University and ETH Zurich, Zurich, Switzerland.

1870. **CWave: Software for the Design and Analysis of 13C Labeling Studies Performed In Vivo.**
 G.F. Mason.
 Yale University, School of Medicine, New Haven, CT, USA.
1871. Comparison of Methods for Baseline Characterization of In Vivo 1H MR Spectra.
B.J. Soher, K. Young and A.A. Maudsley.
DVA Medical Center, San Francisco, CA, USA.

1872. Symmetric Apodization of Spectroscopy Signals Leads to Lean Lines.
S.A. Roell, U. Boettcher and O. Heid.
Siemens AG, Erlangen, Germany.

1873. Analysis of Lipids in Primary and Clonal Brain Cells by Coupled HPLC-1H NMR: Localization of Sphingomyelin in Glia.
Universität Bremen, Bremen, Germany and Universität Oldenburg, Oldenburg, Germany.

1874. Compared Effect of Short-Chain Fatty Acids and Acetate on Energetic Metabolism on Isolated Perfused Liver of Fed Rats.
Université Bordeaux 2, Bordeaux, France and Hôpital Haut-Lévêque, Pessac France.

Musculoskeletal MR Spectroscopy

Hall C
Wednesday: 13:30 – 15:30

1875. Metabolic Control Analysis of Insulin Stimulated Glucose Disposal in Rat Skeletal Muscle.
Yale University School of Medicine, New Haven, CT, USA.

1876. Quantitative Comparison Between Fat Selective Imaging and Localized 1H-Spectroscopy: Assessment of Muscular Lipids in 32 Volunteers.
University of Tübingen, Tübingen, Germany and Albert Einstein College of Medicine, New York, NY, USA.

1877. Impaired Metabolic Recovery from Exercise and Decreased Oxidative Capacity Correlate with Fatigue in Patients with Juvenile Dermatomyositis.
Vanderbilt Medical School, Nashville, TN, USA and Temple University, Philadelphia, PA, USA.

1878. 31P-MRS of Functional Electrical Stimulated Muscle in SCI Subjects.
University of California, Los Angeles, CA, USA.

1879. High Resolution 13C MRS Studies of Cartilage Metabolism in Intact Bovine Explants.
University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, USA.

1880. Acquired Generalized Lipoatrophy (AGL) and Severe Insulin Resistance (IR): Chemical Shift Selective MR Imaging and 1H-MR Spectroscopy.
University of Tuebingen, Tübingen, Germany.

1881. Effect of Creatine Ingestion on Muscle Bioenergetics during Intermittent Maximal Exercise: a 31P-NMR Study.
Unité de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS and Laboratorie de Physiologie de Université Victor Segalen, Bordeaux 2, Bordeaux, France.
University of Tuebingen, Tuebingen, Germany.

1883. Intramyocellular Lipid (IMCL) Stores Before and After Lipid Infusion.
M. Králik, M. Krebs, H. Stingl, V. Mlynárik, S. Gruber, E. Moser and M. Roden.
University of Vienna, Vienna, Austria.

1884. End of Exercise pH and PCR Values Normalized to Power Output are Invariant Metabolic Parameters of Muscle Metabolism. A P-31 MR Spectroscopy Study.
Faculté de Médecine and Hôpital de la Conception, Marseille, France.

1885. The Role of Exchangeable Protons in the Magnetization Transfer Effect of Creatine in Rat Skeletal Muscle.
M.J. Kruiskamp and K. Nicolay.
University Medical Centre, Utrecht, The Netherlands.

1886. Abnormalities in Magnesium (Mg2+) and ATP Levels Correlate With Weaknesses in Juvenile Dermatomyositis.
Vanderbilt Medical School, Nashville TN, USA.

Imperial College School of Medicine, Hammersmith Hospital and The National Sports Medicine Institute of the UK, London, UK.

H.E. Möller, D. Wiedermann, J. Schneider, A. Fromme and G. Kurlemann.
Universität Münster and Institut für Chemo- and Biosensorik, Münster, Germany and University of California, San Francisco, CA, USA.

Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Centre de Gériatrie Henri Choussat, Pessac, France and Université Victor Ségalen Bordeaux 2, Bordeaux, France.

1890. Dipolar Coupling Contributions to the Quantification of Lactate in Skeletal Muscle Observed by 1H NMR Spectroscopy.
I. Asllani, E. Shankland, R. Stuppard and M. Kushmerick.
University of Washington, Seattle, WA, USA.

1891. High Spatial Resolution 1H Lipid MRS of Healthy Human Muscles.
J. Hu and J.L. Evelhoch.
Wayne State University School of Medicine, Detroit, MI, USA.
MR Spectroscopy of the Abdomen and Pelvis
Hall C
Wednesday: 13:30 – 15:30

1892. Is Grading of Prostate Carcinoma Possible by 2D 1H CSI?
B. Pfleiderer, M. Stanka, E. Eltze, A. Maier, A. Semjonow, K.D. Sievert, W. Böker and W. Heindel.
University of Münster, Münster, Germany.

1893. A 3D Phosphorus Chemical Shift Imaging Assessment of Metabolites in the Regenerating Human Liver following Partial Hepatectomy.
Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

Memorial Sloan-Kettering Cancer Center, New York, NY, USA and University of California at San Francisco, San Francisco, CA, USA.

1895. Measurement of Liver TCA Cycle Flux in Awake Rats.
Yale University School of Medicine, New Haven, CT, USA.

1896. In Vivo 1H MRS of Malignant Extra-Cranial Tumours at 1.5T: Observed Metabolite Signals and Changes in Response to Chemotherapy.
Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey, UK.

1897. The Biliary Excretion of a Xenobiotic Demonstrated In Vivo at 1.5T Using 1H-MRS.
A.S.K. Dzik-Jurasz, P.S. Murphy, M.O. Leach and I.J. Rowland.
Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey, UK.

1898. 1H-NMR and ESR Spectroscopic Assessment of Cyanobacterial Toxin-Induced Liver Damage in Rats.
S.A. Sturgeon, R.A. Towner and K.E. Hore.
James Cook University, Townsville, Queensland, Australia.

1899. Spectral Characterization of Prostate Biopsies After External Beam Radiotherapy.
National Research Council of Canada, Manitoba Cancer Research and Treatment Foundation, Winnipeg Clinic, and University of Manitoba, Winnipeg, Manitoba, Canada.

1900. The Hepatobiliary 19F-MRS Catabolite Signal Detected From Patients on Protracted Venous Infusion of 5-Fluourouracil is Detected Predominantly in the Gallbladder.
Royal Marsden Hospital, Sutton, Surrey, UK.

N. Maril, R. Margalit, M. Brezis and H. Degani.
The Weizmann Institute of Science, Rehovot, Israel and Hadassah University Hospital, Jerusalem, Israel.

1902. Pre-Treatment Phosphorus MR Spectroscopy (31P-MRS) Aids in Determination of Tumor Aggressiveness and Early Prediction of Treatment Response in Non-Hodgkin's Lymphoma In Vivo.
Fox Chase Cancer Center, Philadelphia, PA, USA.
1903. **Proton MR Spectroscopy of Prostate Cancer: Comparison 2D-CSI Technique Using Phased-Array Coil with Using Endorectal Surface Coil.**
Tenri Hospital, Tenri, Japan; Kobe University, Kobe, Japan and Siemens-Asahi Medical Technologies, Tokyo, Japan.

1904. **Clinical MR-Spectroscopy of Patients During Radiotherapy Under Treatment of Erythropoietin to Correct for Anemia.**
M. Büchert, C. Altehoefer, K. Fischer, S. Bartelt, M. Henke and J. Hennig.
University of Freiburg, Freiburg, Germany.

1905. **Evidence of Strong Coupling in Human Prostate Using Endorectal 2D JPRESS Spectroscopy In Vivo.**
M.A. Thomas, M. Raman, A. Marumoto, K. Yue, N. Binesh and Z. Barbaric.
University of California, Los Angeles, CA, USA.

1906. **The Role of High Resolution MRI and In Vivo MRS in Assessing Response of Stage Ib Cervical Carcinoma to Neoadjuvant Chemotherapy.**
M.M. Mahon, A.D. Williams, G.A. Coutts, W.P. Soutter, G.A. McIndoe and N.M. deSouza.
Hammersmith Hospital, London, UK.

1907. **Evaluation of Female Intrapelvic Tumors by Clinical Proton MR Spectroscopy.**
Tokushima University, Tokushima, Japan.

Pediatric MR Spectroscopy

Hall C
Thursday: 13:30 – 15:30

1908. **Clinically Feasible 1-13C-Glucose Infusion Protocol in Pediatric Patients.**
Huntington Medical Research Institutes and California Institute of Technology, Pasadena, CA, USA.

1909. **N-Acetyl-Aspartate: A Marker for Viable Neurons?**
T. Thiel, A. Capone, J.F. Schneider, J. Hennig and E. Martin.
University Children's Hospital, Zurich, Switzerland and University of Freiburg, Freiburg, Germany.

1910. **Proton Magnetic Resonance Spectroscopic Imaging (MRSI) and Cognitive Outcome in Children with Fetal Alcohol Syndrome (FAS).**
Wayne State University School of Medicine, Detroit, MI, USA.

1911. **Multiple Covariance Analysis of Metabolic Differences in the Brain of Autistic Patients Depending on the Cerebral Region and Age Measured by Proton MR Spectroscopy.**
Tokushima University, Tokushima, Japan.

1912. **Brain Metabolite Levels Appear Normal in Children with Cockayne Syndrome: An In Vivo 1H MRS Study.**
W. Huang, L. Gabis, P. Roche, M. Savatic, C. Geronimo, T. Button and A. Belman.
State University of New York, Stony Brook, NY, USA.

1913. **MRS in the Diagnosis and Monitoring of Maple Syrup Urine Disease.**
Children's Hospital Los Angeles, Los Angeles, CA, USA and California Institute of Technology, Pasadena, CA, USA.
1914. In Vivo 1H MRS Measurement of Brain Glycine Levels in Non-Ketotic Hyperglycinemia: Correlation with Plasma Glycine Levels.
W. Huang, L. Gabis, A. Tudorica, P. Parton, P. Roche and N. Lenn.
State University of New York, Stony Brook, NY, USA.

C-S. Lin, B. Fenton, C. Macedonia, D. Schellinger and S.M. Ascher.
Georgetown University Medical Center, Washington, DC, USA.

1916. Proton Spectroscopy of the Brain of Preterm Infants.
A.M. Roelants-van Rijn, J. van der Grond, L.S. de Vries and F. Groenendaal.
Wilhelmina Children's Hospital, Academic Hospital Utrecht and University Medical Center, Utrecht, The Netherlands.

A.M. Roelants-van Rijn, J. van der Grond, L.S. de Vries and F. Groenendaal.
Wilhelmina Children's Hospital, Academic Hospital Utrecht and University Medical Center, Utrecht, The Netherlands.

1918. Serial MRI and MRS in Infants and Children with Mitochondrial Disease.
Children's Hospital and Harvard Medical School, Boston, MA, USA.

1919. Metabolic Change in the Brain by Adrenocorticotropic Hormone (ACTH) Injection Treatment in West Syndrome Evaluated by Proton MR Spectroscopy.
Tokushima University, Tokushima, Japan.

1920. Long-term Therapeutical Course of Two Cases of Non-Ketotic Hyperglycinemia Monitored by 1H MRS of Serum, Cerebrospinal Fluid and Brain.
Faculté de Médecine and CHU la Timone, Marseille, France.

Biomedizinische NMR Forschungs GmbH and Georg-August-Universität, Göttingen, Germany.

K.M. Cecil, J.C. Egelhoff, B.L. Koch, D. Franz and B.V. Jones.
Children's Hospital Medical Center, Cincinnati, OH, USA.

1923. Short TE Cerebral H-MRS in Children with Neurofibromatosis Type-1.
University of Sheffield and Royal Hallamshire Hospital, Sheffield, UK.

1924. Neuro-Developmental Status of Infants with Transposition of the Great Arteries (TGA) Undergoing Arterial Switch Operation Monitored Before and 1 Year After Surgery by Localized 1H MR Spectroscopy.
Asan Medical Center, University of Ulsan College of Medicine, Asan Institute for Life Sciences and Catholic University Medical School, Seoul, Korea.

1925. The Effects of Intestinal Ischaemia and Reperfusion on Neonatal Liver Metabolites: 1H NMR Indicates Hepatic Glutathione May be Decreased.
S.B. Williams, S.R. Williams, L. Spitz and A. Pierro.
Institute of Child Health and Great Ormond Street Hospital, London, UK and University of Manchester, Manchester, UK.
Pediatric MR Imaging
Hall C
Thursday: 13:30 – 15:30

1926. **Reproduceability of Diffusion Anisotropy Measurements in Human Neonates.**
Stanford University School of Medicine, Stanford, CA, USA.

1927. **Diffusion, Perfusion and T2 MR Imaging of Neonatal Infarcts.**
Massachusetts General Hospital, Boston MA, USA and Massachusetts Institute of Technology, Cambridge MA, USA.

1928. **Magnetic Resonance Image Quantification of the Cerebellum Following Hypoxic-Ischaemic Injury to the Neonatal Brain.**
E. Le Strange, N. Saeed, S. Counsell, D. Edwards and M. Rutherford.
Imperial College of Science Technology and Medicine, Hammersmith Campus, London, UK.

1929. **Diffusion Tensor MRI of the Cervical Spinal Cord of Normal Preterm Newborns: Cord Microstructure Studied by Tensor Eigenvalue Analysis.**
Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; University of Geneva, Geneva, Switzerland and Children's Hospital, Boston, MA, USA.

1930. **Diffusion Changes During Human Brain Maturation.**
Weill Medical College of Cornell University, New York, NY, USA.

1931. **Hippocampal Developmental Changes: MR Evaluation in Patients with Wide Variety of Brain Developmental and Congenital Malformations.**
Gunma University School of Medicine, Maebashi, Gunma, Japan.

1932. **Persistent Reduced Apparent Diffusion Coefficient in Sturge-Weber Syndrome (SWS): Possible Relationship to Increased Tissue Oxygen Extraction.**
University College London Medical School and Great Ormond Street Hospital, London, UK.

1933. **Elevation of T1 and T2 Values in the Cerebral White Matter in Periventricular Leukomalacia.**
Imperial College, Hammersmith Hospital, London, UK.

1934. **1H NMR Imaging and Volumetry in Idiopathic Anatomic Megalencephaly.**
University Medical Center, Utrecht, The Netherlands.
Poster Sessions

Spectroscopic Quantitation
Hall C
Tuesday: 13:30 – 15:30

1935. Observation of Synthesis of Human Cortical GABA by 13C NMR.
Yale University School of Medicine, New Haven, CT, USA and Nathan Kline Institute, Orangeburg, NY, USA.

1936. Improved Formulas for Multiple-Site Saturation-Transfer Measurements of Chemical-Exchange Rates and Comparison with a New Method.
P.B. Kingsley and W.G. Monahan.
North Shore University Hospital, Manhasset, NY, USA, and New York University School of Medicine, New York, NY, USA.

1937. Metabolite Concentrations of Pons, Mendulla, Motor Cortex in Normal Human Brain Using 2D CSI.
B. Yang, Y. Wang, E. Pioro and T.C. Ng.
The Cleveland Clinic Foundation Cleveland, OH, USA.

University of Minnesota, Minneapolis, MN, USA.

1939. Metabolite T_1 Differs Within and Between Regions of Normal Human Brain.
University of British Columbia, Vancouver, British Columbia, Canada.

1940. Effects of Tissue Segmentation on MRSI Results in the Hippocampal Region.
Central Institute of Mental Health, Mannheim, Germany and Wellcome Department of Cognitive Neurology, London, UK.

1941. Principal Component Analysis versus Hankel Total Least Squares in Magnetic Resonance Spectroscopic Quantitation.
S. Van Huffel, Y. Wang, L. Vanhamme and N. Mastronardi.
Katholieke Universiteit Leuven, Leuven, Belgium.

O. Beckonert, J. Monnerjahn, U. Bonk and D. Leibfritz.
University of Bremen and Central Hospital Bremen-Nord, Bremen, Germany.

1943. The Optimized Detection of Myo-Inositol in vivo Using PRESS and STEAM at 3T.
H. Kim and P.S. Allen.
University of Alberta, Edmonton, Alberta, Canada.

1944. Signal-to-Noise Consequences of Accurate Metabolite Measurements In Vivo Using the One-pulse Experiment.
R.G.S. Spencer and K.W. Fishbein.
National Institutes of Health, Baltimore, MD, USA.

1945. Correlation Between Water Content, Transverse Relaxation, and Magnetization Transfer in Red Bone Marrow of Healthy Young Subjects.
Eberhard-Karls-University, Tübingen, Germany.
 University of Sydney, Sydney, Australia and National Research Council of Canada, Winnipeg, Manitoba, Canada.

 S. Cavassila, O. Beuf, A. Naressi and D. Graveron-Demilly.
 Université LYON I-CPE, Villeurbanne, France and Universität Leipzig, Leipzig, Germany.

 G. Helms and A. Piringer.
 Karolinska Hospital, Stockholm, Sweden.

 Toshiba Medical Systems R&D Center, Otawara, Japan and Soka University, Hachioji, Japan.

 Physikalisch-Technische Bundesanstalt, Berlin, Germany.

1951. Quantitative MR Spectroscopy made EASY.
 St. Jude Children's Research Hospital, Memphis, TN, USA.

1952. Incorrect Echo Times Yield a 10% Reduction in the Lactate Intensity and a 9% Reduction in the T2 of Lactate.
 J. van der Grond and K.P.J. Braun.
 University Medical Center, Utrecht, the Netherlands.

 Fox Chase Cancer Center, Philadelphia, PA, USA.

 Z. Dong, W. Dreher and D. Leibfritz.
 Universität Bremen, Bremen, Germany.

1955. Does the Cr-Methyl-signal in 1H-NMR-Spectra Vary During Hypoxia?
 Institute of Physics and University Hospital of Würzburg, Würzburg, Germany.

1956. Automated Analysis of In Vitro 1H NMR Spectra Using Simulated Basis Functions.
 V. Govindaraju, B.J. Soher, K. Young and A.A. Maudsley.
 University of California San Francisco, San Francisco, CA, USA.

 University of Bremen, Bremen, Germany and Children's Hospital of the University of Tübingen, Tübingen, Germany.

 M.C. Newbold and S.F. Keevil.
 Guy's King's and St Thomas' School of Medicine, King's College, London, UK.
Poster Sessions

1959. **Quantification of the Serial Reproducibility of In Vivo 3D 1H MRS in the Human Brain.**
Fox Chase Cancer Center, Philadelphia, PA, USA and University of California and Department of Veterans Affairs Medical Center, San Francisco, CA, USA.

1960. **A 3-Stage Robust Classification Strategy for Biomedical Spectra: Application to Urine MR and IR Spectra to Distinguish Normal Allografts from Biopsy Proven Rejections.**

1961. **Calibration of MRS Signal Using Ventricular CSF as an Internal Reference.**
Martin -Luther-University, Halle/Wittenberg, Germany and The Children’s Hospital of Philadelphia, Philadelphia, PA, USA.

1962. **Differentiation Between Intra- and Extracellular Inorganic Phosphate in 31P NMR Spectra of the Human Heart.**
Universität Tübingen, Tübingen, Germany and Max Grundig Clinic, Bühl, Germany.

1963. **Inter- and Intra-Site Reproducibility of in vivo Metabolite Quantification with Proton Magnetic Resonance Spectroscopic Imaging.**
University College London, London, UK and National Society for Epilepsy, Chalfont St. Peter, Bucks, UK.

1964. **Segmentation of Brain from a PRESS Localised Single Volume Using Double Inversion Recovery for Simultaneous T$_1$ Nulling.**
C.C. Hanstock and P.S. Allen.
University of Alberta, Edmonton, Alberta, Canada.

1965. **Classification of 1H MR Spectra of Common Pathogenic Bacteria Using Linear Discriminant Analysis.**
University of Sydney, Sydney, Australia.

1966. **How Accurate is Whole Brain N-Acetylaspartate Quantification?**
Fox Chase Cancer Center and the University of Pennsylvania Medical Center, Philadelphia, PA, USA.

Quantitative Imaging
Hall C
Monday: 14:00 – 16:00

1967. **MRI Intracranial Tumor Characterization by the Association of Texture Analysis, Dynamic Relaxometry and Morphometric Parameters: A Preliminary Study.**
Faculté de Médecine and Fédération d’Imagerie Médicale de Pontchaillou, CHRU, Rennes, France.

1968. **Improving Estimates of Endothelial Permeability Surface Area Product Using Constrained Fitting Parameters for the Estimation of the Plasma Tracer Concentration Function (PTCF).**
University of Manchester, Manchester, UK and AstraZeneca, Macclesfield, Cheshire, UK.
X.P. Zhu, A. Jackson and K.L. Li.
University of Manchester, Manchester, UK.

1970. Assessment of Body Fat in Obese Rats by MRI: Validation and Timecourse Study.
Novartis Pharma Ltd, Basel, Switzerland.

1971. Methodology for the In Vivo Estimation of Fat Emulsification Using MRI.
P. Young, L. Marciani, D. Tyler, P. Manoj, A. Fillery-Travis, R. Spiller and P.A. Gowland.
University of Nottingham, Nottingham, UK and Institute of Food Research, Norwich, UK.

C. Bowen and B.K. Rutt.
University of Western Ontario and John P. Robarts Research Institute, London, ON, Canada.

A. Celik and W. Lin.
University of North Carolina, Chapel Hill, NC, USA and Washington University, St. Louis, MO, USA.

K. Wachowicz and R.E. Snyder.
University of Alberta, Edmonton, Alberta, Canada.

L. Li and J.S. Leigh.
University of Pennsylvania, Philadelphia, PA, USA.

Mayo Clinic, Rochester, MN, USA.

1977. The Effects of Growth Hormone Treatment on Spin-Lattice Relaxation Times in 18q- Subjects.
University of Texas Health Science Center, San Antonio, TX, USA.

Y. Yu, A.M. Abduljalil and P.M. Robitaille.
The Ohio State University, Columbus, OH, USA.

Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Germany; J.W. Goethe-Universität, Frankfurt, Germany and Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.

1980. Mapping the Refractive Index Distribution in Human Eye Lenses Using Transverse Relaxation (T2) Imaging.
B.A. Moffatt and J.M. Pope.
Queensland University of Technology, Brisbane, Queensland, Australia.

1981. Reduced-Dose Cranial Radiation Associated with Decreased CNS Morbidity.
St. Jude Children’s Research Hospital, Memphis, TN, USA.

Queensland University of Technology, Brisbane, QLD, Australia.
Y. De Deene, C. De Wagter, E. Achten and W. De Neve.
University Hospital of Gent, Gent, Belgium.

1984. A Methacrylate Type Gel for Radiotherapy Dosimetry: Assessment by MRI and MRS.
P.S. Murphy, V. Cosgrove, A.J. Schwarz, S. Webb and M.O. Leach.
The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK.

1985. BANG™ Gel Dosimetry in Carbon Ion Beams.
Deutsches Krebsforschungszenrum (DKFZ), Heidelberg, Germany; J.W.Goethe-Universität, Frankfurt, Germany and Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.

P.S. Tofts, C. Baldock and B.A. Berkowitz.
University College London, London, UK; Queensland University of Technology, Brisbane, Australia and Wayne State University, Detroit, MI, USA.

K. Wachowicz and R.E. Snyder.
University of Alberta, Edmonton, Alberta, Canada.

High Field (≥ 3T): Normal Anatomy
Hall C
Monday: 14:00 – 16:00

1988. Average RF Power Reduction for T$_2$ FLAIR at 3.0 Tesla.
H.G. Reynolds and J. Rydberg.
GE Medical Systems, Milwaukee WI, USA and Mayo Clinic, Rochester MN, USA.

P-M L. Robitaille, A.M. Abduljalil and A. Kangarlu.
The Ohio State University, Columbus, OH, USA.

1990. Comparison of Cerebral Cortical Vessels of High Resolution Human and Rodent Brain Images at 8 Tesla.
The Ohio State University, Columbus, OH, USA.

1991. In-vivo Measurement of Localized Tissue Sodium T$_2^*$ at 4.0 Tesla.
R. Bartha and R.S. Menon.
John P. Robarts Research Institute, London, Ontario, Canada.

1992. Relationship of Longitudinal Relaxation Rates to Estimated Regional Iron and Water Contents in Human Brain In Vivo at 3 Tesla.
Henry Ford Hospital and Health Sciences Center, Detroit, MI, USA.

1993. High Resolution MRI of Brainstem at 8 Tesla.
The Ohio State University, Columbus, OH, USA.
Poster Sessions

1994. **Routine Clinical Brain MR Imaging at 3.0T: Initial Experience.**
Mayo Clinic and Foundation, Rochester MN, USA.

1995. **Double Inversion-Recovery Echo-Planar Imaging at 3 Tesla.**
Medical College of Wisconsin, Milwaukee, WI, USA.

1996. **Optimizing Image Parameters of 3.0T MRI for T₁ SE, T₂ SE, and 3D SPGR in Diagnostic Brain MRI.**
Mayo Clinic, Rochester, MN, USA.

Safety and Bioeffects

Hall C
Wednesday: 13:30 – 15:30

1997. **Side Effects after Anesthesia for Cerebral MRI in 175 Children.**
University of Graz, Graz, Austria.

1998. **Mutagenic or Co-Mutagenic Effect of Static Magnetic Fields in the Ames-Test?**
Johannes Gutenberg-University, Mainz, Germany.

1999. **Potential MR Hazard to Patients with Metallic Heart Valves: The Lenz Effect.**
B. Condon and D.M. Hadley.
Institute of Neurological Sciences, Glasgow, UK.

2000. **MRI and Pacemaker: Is 1.5 Tesla Enough to Close the Reed Switch of a Pacemaker?**
University and ETH, Zurich, Switzerland; Bakken Research Center, Maastricht, The Netherlands and University Hospital, Zurich, Switzerland.

2001. **Fast MR Imaging of RF Heating via Phase Difference Mapping.**
University of Pennsylvania, Philadelphia, PA, USA and Novartis Institute for Biomedical Research, Summit, NJ, USA.

2002. **Analysis of RF Heating at 3.0T.**
J.P. Felmlee, M.A. Bernstein and J. Huston III.
Mayo Clinic and Foundation, Rochester MN, USA.

2003. **RF Transmit Power Limit for the Bare-Wire Loopless Catheter Antenna.**
C.J. Yeung and E. Atalar.
John Hopkins University, Baltimore, MD, USA.

2004. **Accurate SAR and B₁ Field Calculations Using High Resolution Head Models.**
The Ohio State University, Columbus, OH, USA.

2005. **Bodycoil Electric Field Distribution and Surface Coil Heating.**
C.C. Guclu, S. Venkatraman and X. Lou.
GE Medical Systems, Milwaukee, WI, USA.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Knowledge Transfer From Electrostimulation to Peripheral Nerve Stimulation by Magnetic Gradient Fields in MRI.</td>
<td>A. Hoffmann, S. Faber, A. Bongers, L. Jäger and M. Reiser.</td>
<td>Klinikum Grosshadern, University of Munich, Munich, Germany.</td>
</tr>
<tr>
<td>2009</td>
<td>Acoustic Noise Reduction in MRI by Selective Gradient Derating.</td>
<td>Y. Zhou and J. Ma.</td>
<td>GE Medical Systems, Milwaukee, WI, USA.</td>
</tr>
<tr>
<td>2010</td>
<td>Acoustic Optimisation of Rapid MRI.</td>
<td>F. Hennel.</td>
<td>CEA-SHFJ, Orsay, France.</td>
</tr>
</tbody>
</table>

Non-Gadolinium Contrast Agents: Animal Models and Others

Hall C
Tuesday: 13:30 – 15:30

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Magnetization Transfer Imaging Reveals Lower Contrast in Mice Afflicted with Niemann-Pick Type C Neurodegenerative Disease.</td>
<td>J. Guo, J-P. Galons and R.J. Gillies.</td>
<td>University of Arizona Cancer Center, Tucson, AZ, USA.</td>
</tr>
</tbody>
</table>
2017.
T₂ Changes Following Shunt-Treatment of Neonatal Hydrocephalic H-Tx Rats.
C.M. Mohr, B.J. Carter, J.S. Depelteau, S.J. Blackhand and H.C. Jones.
University of Florida, Gainesville, FL, USA and National High Magnetic Field Laboratory, Tallahassee, FL, USA.

2018.
Cerebral Blood Volume Measurements: Effects of Water Exchange.
University of North Carolina, Chapel Hill, NC, USA and Washington University, St. Louis, MO, USA.

Contrast Agent Applications

Hall C
Wednesday: 13:30 – 15:30

2019.
Comparison of Gd-DTPA BMA and NC100150 Enhancement Patterns in C3H Mammary Carcinoma Bearing Mice.
Aarhus University Hospital, Aarhus, Denmark and Nycomed/Amersham, Oslo, Norway.

2020.
Optimal dose of Gd-DTPA in Dynamic MR Studies.
H. Rusinek, V. Lee, G. Johnson, A. Huang and A. Ton.
NYU Medical Center, New York, NY, USA.

2021.
Quantification of Gadodiamide Signal Changes for rCBF Measurements.
State University of New York, Stony Brook, NY, USA.

2022.
Quantification of Gadodiamide Induced MR Signal Changes for Hemodynamic Measurements.
State University of New York, Stony Brook, NY, USA.

2023.
Quantitative Assessment of Gd-DTPA Contrast Agent from Signal Enhancement.
Aarhus University Hospital, Aarhus, Denmark.

2024.
Human Cerebral Blood Flow Maps Improve with Higher Concentration of Contrast Agent.
Massachusetts General Hospital, Charlestown, MA, USA; Westfalian Wilhelms-University, Münster, Germany and Schering AG, Berlin, Germany.

2025.
Accurate De-Oxygenation of Ex Vivo Whole Blood Using Sodium Dithionite.
K. Briley-Sæbø and A. Bjørnerud.
Nycomed Imaging AS, Oslo, Norway.

2026.
Analytical Model of Susceptibility Induced MR Signal Dephasing By Capillaries.
V.G. Kiselev and D.S. Novikov.
Research Center Jülich GmbH, Jülich, Germany; Institute of Physics, Minsk, Byelorussia and California Institute of Technology, Pasadena, CA, USA.

2027.
An Estimate of the Error Introduced by ¹H Exchange in Bolus Tracking.
G.R. Moran and F.S. Prato.
The Lawson Research Institute, St. Joseph’s Health Centre, London, Ontario, Canada.
C.S. Springer, Jr., C.S. Landis, X. Li and W.D. Rooney.
Brookhaven National Laboratory, Upton, NY, USA and State University of New York, Stony Brook, NY, USA.

2029. Comparison of Gadomer-17 and Gadopentetate dimeglumine (Gd-DTPA) for Assessment of Tumor Vascular Characterization.
Shimane Medical University, Izumo, Japan; Kobe University, Kobe, Japan; Miki Civil Hospital, Miki, Japan and Nihon Schering, Osaka, Japan.

2030. NC100150 Enhanced Imaging Offers the Possibility to Monitor Pharmacological Modification of Tumor Blood Flow and Blood Volume in Experimental Tumors in Mice.
Aarhus University Hospital, Aarhus, Denmark and Nycomed/Amersham Imaging, Oslo, Norway.

Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany and Siemens Medizintechnik, Erlangen, Germany.

2032. Safety and Efficacy of Gadobenate Dimeglumine on MR Imaging of Pediatric CNS. Comparison with Gadopentetate Dimeglumine.
Bracco SpA; Ospedale S. Raffaele and Instituto Neurologico Besta, Milan, Italy.

German Cancer Research Center, Heidelberg, Germany and Bracco-Byk Gulden, Konstanz, Germany.

2034. MRI Contrast Enhancement of Human Glioblastoma Multiforme with Gadolinium Texaphyrin.
University of California, Los Angeles, CA, USA.

2035. Contrast Enhanced MRI of Brain Tumor in Rats Using a New Medium Molecular Size Contrast Agent NMS60 Compared with Low Molecular Size Gd-DTPA.
Nihon Medi-Physics Co. Ltd., Chiba, Japan.

2036. Contrast Agent Enhanced 7T MRI of a Transgenic Mouse Model of Multiple Sclerosis.
NYU School of Medicine, New York, NY, USA.

UCLA Medical Center, Los Angeles, CA, USA and Nycomed, Wayne, PA, USA.

University of Muenster, Muenster, Germany and Schering AG, Berlin, Germany.

2039. 3D Fast MR Angiography of P 760 and Dose Effect Relationship After Intravenous Bolus Injection in Rabbit Compared to Gd-DOTA.
Georg-August-Universität, Göttingen, Germany and Guerbet, Roissy, France.
Kyoto University, Kyoto, Japan and National Institutes of Health, Bethesda, MD, USA.

University Hospital, Graz, Austria.

2042. Interstitial MR Lymphography With MS-325 (Angiomark®).
S.G. Ruehm, R. Lauffer, K. Treiber, A. Borowski and J.F. Debatin.
University Hospital, Essen, Germany and EPIX Medical, Cambridge, MA, USA.

2043. Superparamagnetic Iron Oxide MION: A Contrast Agent for 23Na Cardiac MRI in Myocardial Infarction.
Johns Hopkins University, Baltimore MD, USA; University of Pittsburgh, Pittsburgh, PA, USA and Advanced Magnetics Inc., Cambridge, MA, USA.

University of California, San Francisco, CA, USA and Schering AG, Berlin, Germany.

Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea.

Asan Medical Center, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Seoul, Korea and Schering AG, Berlin, Germany.

2047. EVP 1001-1: A New Cardiac Specific MR Contrast Agent with Optimal Kinetics for Evaluation of the Ischemic Heart.
Eagle Vision Pharmaceutical Corp., Chester Springs, PA, USA and Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.

G. Morana, L. Grazio1, M. Kirchin, A. Spinazzi, A. Chiesa and C. Procacci.
University of Verona, Verona, Italy; University of Brescia, Brescia, Italy and Bracco SpA, Milan, Italy.

2049. The Rim Enhancement Patterns of Liver-Specific Gd-EOB-DTPA and MnDPDP in Hepatic Abscess Model.
Kyuungpook National University, Taegu, Korea.

G. Pirovano, M. Kirchin and A. Spinazzi.
Bracco S.p.A., Milan, Italy.
Poster Sessions

2051. Optimal Delay Time for MR Imaging of the Biliary Tract Following Mn-DPDP Administration.
G.S. Foster and D. Hebel.
Rush University, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL, USA.

2052. Gadobenate Dimeglumine-enhanced Dynamic Imaging of Hypervascular Liver Lesions in Previously Contrast-Enhanced Liver Parenchyma.
G. Schneider, K. Altmeyer, M. Kirchin, R. Seidel, A. Stumm and B. Kramann.
University Hospital, Homburg / Saar, Germany.

2053. MRI Detection of Macrophage Infiltration in Rat Renal Transplantation.
C. Ho, Y. Zhang, S.J. Dodd, K.S. Hendrich and M. Williams.
Carnegie Mellon University, Pittsburgh, PA, USA.

2054. Excretion of Gadopentetate Dimeglumine into Human Breast Milk During Lactation.
University Hospital, Zurich, Switzerland; Schering AG, Berlin, Germany and University of Zurich, Zurich, Switzerland.

New Contrast Agents

Hall C
Wednesday: 13:30 – 15:30

National Institutes of Health, Bethesda, MD, USA.

2056. ²H NMR Study of the MP 2269-HSA Interaction: A Step Forward to the Dynamics of Non-Covalent Binding.
L. Vander Elst, S. Laurent, K. Adzamli and R.N. Muller.
University of Mons-Hainaut, Mons, Belgium and Mallinckrodt Inc., St. Louis, MO, USA.

2057. Beneficial Effect of a Slow Water Exchange on the High Field Relaxivity of Dy-DTPA Derivatives.
L. Vander Elst, A. Roch, P. Gillis, S. Laurent, F. Botteman, J.W.M. Bulte and R.N. Muller.
University of Mons-Hainaut, Mons, Belgium and National Institutes of Health, Bethesda, MD, USA.

2058. Microenvironmental Responsive MRI Contrast Agent Consisting of Polyion Complex for Tumor Sensing.
M. Mikawa, N. Miwa, T. Akaike and A. Maruyama.
Tokyo Institute of Technology, Yokohama, Japan and Nihon Schering K.K., Osaka, Japan.

2059. Molecular Factors that Determine Curie Spin Relaxation in Dy-Chelates.
J.W.M. Bulte, M.T. Greenfield and P. Caravan.
National Institutes of Health, Bethesda, MD, USA and EPIX Medical Inc., Cambridge, MA, USA.

2060. Blood Clearance of High-Generation Dendrimer-Based Gadolinium Chelates: The Study of a Potentially Saturable Site (Mechanism) in the Rat.
National Institutes of Health, Bethesda, MD, USA.

2061. Paramagnetic Relaxation Enhancement in Off-Resonance Rotating Frame: From Gd-DTPA to MION.
H. Zhang and A.M. Wyrwicz.
ENH Research Institute, Evanston, IL, USA.
2062. Magnetodendrimers as a New Class of Cellular Contrast Agents.
National Institutes of Health, Bethesda, MD, USA; Temple University, Philadelphia, PA, USA and University of Minnesota, Minneapolis, MN, USA.

Kyoto University, Kyoto, Japan and National Institutes of Health, Bethesda, MD, USA.

2064. Gadolinium-cDTPAa Conjugated with Melanoma Monoclonal Antibody 9.2.27 as a Melanoma Specific MRI Contrast Agent.
University of Western Sydney and St. George Hospital, Sydney, Australia.

2065. Liposomes as Carriers of Amphiphilic Gd-Chelates.
C. Gløgård, G. Stensrud, R. Hovland, S.L. Fossheim and J. Klaveness.
University of Oslo and Nycomed Imaging AS, Oslo, Norway.

Nycomed Amersham Imaging, Oslo, Norway and Uppsala University Hospital, Uppsala, Sweden.

2067. Direct 1H NMR Observation of a Lanthanide Bound Water in Aqueous Solution.
S. Zhang, K. Wu and A.D. Sherry.
University of Texas at Dallas, Richardson, TX, USA and University of Texas Southwestern Medical Center, Dallas, TX, USA.

2068. Binding of Gd(III) Complexes to Albumin as Measured by High Field EPR.
University of Illinois, Urbana, IL, USA.

Novel Contrast Mechanisms
Hall C
Thursday: 13:30 – 15:30

2069. In Vivo 1H Double Quantum Filtered MRI of the Human Wrist and Ankle.
National Institutes of Health, Bethesda, MD, USA and Tel Aviv University, Tel Aviv, Israel.

2070. Intermolecular Multiple-Quantum Coherence Relaxation and its Implication for MRI Contrast.
University of Rochester, Rochester, NY, USA.

2071. Intermolecular Double-Quantum-Coherence Imaging.
University of Pennsylvania Medical Center, Philadelphia, PA, USA and Princeton University, Princeton, NJ, USA.

2072. Image Formation From Intermolecular Double-Quantum Coherences.
J. Zhong, Z. Chen and E. Kwok.
University of Rochester, Rochester, NY, USA.
2073. Feasibility of Intermolecular Zero Quantum MRI at 1.5T.

Princeton University, Princeton, NJ, USA and University of Pennsylvania Medical Center, Philadelphia, PA, USA.

2074. 3D MR Microscopy of the Mouse Brain with Intermolecular Zero and Double Quantum Coherences at 11.7T.

California Institute of Technology, Pasadena, CA, USA.

2075. Magnetization Transfer Contrast in Electrically Stimulated Neural Tissue.

University of Illinois at Urbana-Champaign, Urbana, IL, USA and National High Magnetic Field Laboratory, Tallahassee, FL, USA.

2076. Improved Specificity of Magnetization Transfer with Low-Power Binomial Pulses.

M. Pachot-Clouard and L. Darrasse.
U.P.S., Orsay, France and Université Joseph Fourier, Grenoble, France.

Inserm U484, Metabolic Explorer and Centre Jean-Perrin, Clermont-Ferrand, France.

2078. Comparison of Continuous Wave Theory to Pulsed Multicentre MT Data.

A. Ramani and P.S. Tofts.
University College London, London, UK.

2079. Estimation of Magnetization Transfer Rates From PACE Experiments With Pulsed Saturation.

S. Ropele, R. Stollberger, F. Ebner, H-P. Hartung and F. Fazekas.
Karl-Franzens University, Graz, Austria.

2080. 19F Off-Resonance T_1^p as Intermolecular Interaction MRI Contrast for Halothane in Brain.

ENH Research Institute, Evanston, IL, USA.

2081. T_1 at 1.5 Tesla is Shorter in Gray Matter than in White Matter in the Occipital Lobe of Normal Human Brain.

Johns Hopkins University School of Medicine and Kennedy Krieger Institute, Baltimore, MD, USA and University of Kuopio, Kuopio, Finland.

2082. Effect of pH on the NMRD Profiles of Ferritin and Ferritin-like Particles Solutions.

Y. Gossuin, A. Roch, R.N. Muller and P. Gillis.
University of Mons-Hainaut, Mons, Belgium.

2083. The Utility of NC100150 Injection for the Assessment of Soft Tissue Blood Volume.

L.O. Johansson, A. Bjornerud and H. Ahlström.
Nycomed Imaging A/S, Oslo, Norway and Uppsala University Hospital, Uppsala, Sweden.

2084. A Quantitative Comparison of a Multiple Gradient/Spin Echo Imaging Method With C-P-M-G for Measuring the Contribution of Brain Iron to the Transverse Relaxation Rate at 3T.

University of Alberta, Edmonton, Alberta, Canada.

J.H. Jensen and R. Chandra.
New York University School of Medicine, New York, NY, USA.
<table>
<thead>
<tr>
<th>Abstract Number</th>
<th>Abstract Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2086.</td>
<td>Can MR at 0.5 T Detect Moderate to Severe Chondromalacia in Young Adult Patients That is Potentially Treatable at Arthroscopy?</td>
<td>B.P.M. ter Braak, P.W.J. Vincken, A.R. van Erkel, E.G. Coerkamp, W.M.C. Mallens and J.L. Bloem</td>
<td>Leiden University Medical Center, Leiden, The Netherlands and Westeinde Hospital and Leyenburg Hospital, The Hague, The Netherlands.</td>
</tr>
<tr>
<td>2088.</td>
<td>Grade 2 Mensical Abnormalities in the Knee on MR: Clinical Follow Up of Six Months.</td>
<td>P.W.J. Vincken, B.P.M. ter Braak, A.R. van Erkel, T.P.W. de Rooy, I. Lim A Po and J.L Bloem.</td>
<td>Leiden University Medical Center, Leiden, the Netherlands and Westeinde Hospital and Leyenburg Hospital, the Hague, the Netherlands.</td>
</tr>
<tr>
<td>2092.</td>
<td>Septic and Nonseptic Olecranon Bursitis: MR Imaging Characteristics.</td>
<td>W.B. Morrison, M.A. Medynski, M.E. Schweitzer, J.A. Carrino, T.G. Sanders and W.N. Snearly.</td>
<td>Thomas Jefferson University Hospital, Philadelphia, PA, USA; Wilford Hall Medical Center, San Antonio, TX, USA and Brigham and Women's Hospital, Boston, MA, USA.</td>
</tr>
<tr>
<td>2094.</td>
<td>Longitudinal MR Imaging of the Achilles Tendon Disorders.</td>
<td>P.T. Karjalainen, K. Soila, H.K. Pihlajamäki, P.J.F. Tirman and H.J. Aronen.</td>
<td>Helsinki University Central Hospital, Helsinki, Finland; Mt Sinai Medical Center, Miami Beach, FL, USA and San Francisco MR Imaging Center, San Francisco, CA, USA.</td>
</tr>
</tbody>
</table>
2097. **Giant Cell Tumor of Bone: Enhancement Pattern On MR Imaging.**
W.B. Morrison, W.N. Snearly, K.D. Elsass, K.M. McCabe, J.A. Carrino, T.G. Sanders and T.W. Parsons.
Thomas Jefferson University Hospital, Philadelphia, PA, USA; Wilford Hall Medical Center, San Antonio, TX, USA and Brigham and Women’s Hospital, Boston, MA, USA.

Musculoskeletal MR Imaging

Hall C
Tuesday: 13:30 – 15:30

2098. **In-Vivo Index Finger Moment Arms and Tendon Lines of Action from High-Resolution MRI.**
N.K. Fowler, A.C. Nicol, B. Condon and D. Hadley.
University of Strathclyde and Southern General Hospital, Glasgow, UK.

2099. **In-vivo Stress-Strain Dynamics of Flexor-Extensor Units of the Human Ankle During an Isometric Contraction Using Phase Contrast MRI.**
S. Sinha, A. Lai and V.R. Edgerton.
University of California, Los Angeles, CA, USA.

2100. **Functional Skeletal Muscle Imaging Using RF Tagging and Isometric Exercise.**
E.G. Walsh, B.R. Newcomer, K. Landers, N. Davis and G.M. Pohost.
University of Alabama, Birmingham, AL, USA.

2101. **Functional Joint Imaging: A New Technique Integrating MRI and Biomotion Studies.**
P. Lang, G. Alexander and T.P. Andriacchi.
Stanford University, Stanford, CA, USA.

2102. **Knee Joint Meniscus Fibril Architecture Determined by Diffusion Tensor Microscopy.**
E.W. Hsu, T.P. Vail, F. Guilak and L.A. Setton.
Duke University and Duke University Medical Center, Durham, NC, USA.

2103. **The Importance of Timing of Post-Contrast MRI in Rheumatoid Arthritis- A Study of MRI-Determined Synovial Membrane Volumes and Joint Fluid Enhancement During the First 60 Minutes After Intravenous Gadolinium-DTPA.**
M. Østergaard and M. Klarlund.
Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.

M. Szkudlarek, M. Østergaard, M. Court-Payan, K.E. Jensen, M. Klarlund, T. Klausen, I. Lorenzen and C. Strandberg.
University of Copenhagen Hvidovre and Herlev Hospitals, Copenhagen, Denmark.

2105. **Oral Creatine Supplementation Facilitates Rehabilitation of Muscle Disease Atrophy.**
Katholieke Universiteit Leuven, Belgium; University of Copenhagen, Copenhagen, Denmark, and Queens Medical Centre, University of Nottingham, Nottingham, UK.

2106. **H-1 Double Quantum Filtered NMR Imaging Can Depict Maturation and Ordering of Collagen Fibers in Regenerating Tendon.**
Kyoto Prefectural University of Medicine, Kyoto, Japan.
Poster Sessions

2107. Quantitative Correlation of Contrast Enhanced and T$_2$-Weighted MRI of Electroporation Injury.
The University of Chicago, Chicago, IL, USA.

2108. Intracellular Acidification and Volume Increases Explain 1H T$_2$ Increases During Exercise.
University of Illinois, Urbana-Champaign, Urbana, IL, USA.

2109. Effects of Temperature on Multi-Component T$_2$ Relaxation of *In Vivo* Skeletal Muscle.

2110. Orthogonal Fusion: Improving Resolution for Multispectral Segmentation of Musculoskeletal Structures.
J. Tamez-Pena, K. Parker, E. Kwok, G. Suk Seo and S.M.S. Totterman.
University of Rochester Medical Center, Rochester, NY, USA.

Musculoskeletal MR Imaging: Articular Cartilage
Hall C
Tuesday: 13:30 – 15:30

2111. Quantitative Spatial Analysis of Articular Cartilage Proteoglycans Using GdDTPA$^{2-}$ - Enhanced T$_1$ Imaging.
University of Kuopio and Kuopio University Hospital, Kuopio, Finland.

2112. Sodium and Gd-DTPA$^{2-}$ Enhanced MRI in the Quantitation of Proteoglycans in Cartilage.
University of Pennsylvania, Philadelphia, PA, USA.

2113. *In vivo* Quantification of Gd(DPTA)$^{2-}$-Uptake in Cartilage of Healthy Volunteers.
Malmö University Hospital, Malmö, Sweden.

2114. Effect of Charge on Transport and Distribution of Contrast Agents in Cartilage.
Beth Israel Deaconess Medical Center, Boston, MA, USA and Massachusetts Institute of Technology, Cambridge, MA, USA.

2115. T$_2$ Maps and Water Distribution of Human Articular Cartilage *In Vitro* and *In Vivo*.
S. Lüsse, N. Karger, M. Heller and C-C. Glüer.
Klinikum an der CAU zu Kiel, Kiel, Germany.

2116. Cartilage T$_2$ Dynamics During Compression.
University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

2117. 2H DQF Spectroscopic Imaging of the Distribution of the Order Parameter of Water in Cartilage.
Tel Aviv University, Tel Aviv, Israel and Kyoto Prefectural University of Medicine, Kyoto, Japan.
2118. Driven Equilibrium Imaging of Articular Cartilage in the Wrist.
Stanford University, Stanford, CA, USA; Palo Alto Veterans Affairs Medical Center, Palo Alto, CA, USA and University of California, San Diego CA, USA.

2119. MR Imaging's Unique Capacity to Visualize Macroscopic Structure in Articular Cartilage: Imaging of Striations in Oblique Planes.
Dartmouth Medical School, Hanover NH, USA.

2120. 3D-Echo-Planar DEFT Imaging of Knee Cartilage.
Stanford University, Stanford, CA, USA.

2121. In vivo Spin-lock Imaging of Articular Cartilage in the Human Knee at 1.5T.
University of Pennsylvania, Philadelphia, PA, USA.

2122. Relationship Between T_1 and T_2 and Indentation Displacement in Human Patellar Cartilage: Visualization of Indenter Tip Size Effect by Correlation Mapping.
University of California, San Diego, CA, USA.

2123. Magnetization Transfer: A Surrogate for Immunohistochemical Staining of Collagen in Cartilage?
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children, McGill University, Montreal, Quebec, Canada and Massachusetts Institute of Technology, Cambridge, MA, USA.

T.J. Mosher, H. Smith, B.J. Dardzinski, V.J. Schmithorst and M.B. Smith.
The Penn State University College of Medicine, Hershey, PA, USA and Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.

2125. The Effect of Proteoglycans on Water Relaxation: A Study of T_1p Relaxation in Nanomelic Cartilage.
University of Pennsylvania, Philadelphia, PA, USA and The Penn State University College of Medicine, Hershey, PA, USA.

Johns Hopkins School of Medicine, Baltimore, MD, USA; Northeastern Ohio Universities College of Medicine, OH, USA and National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

2127. Application of a Flexible Loop-Gap Resonator for MR Imaging of Articular Cartilage at 3.0T.
J. Tsai, S. Ashjaee, C. Tsai, E. Adalsteinsson, T. Brosnan, P. Lang, B. Hargreaves, M. Alley and D. Spielman.
Stanford University School of Medicine, Stanford, CA, USA.
Musculoskeletal MR Imaging: Bone Structure and Marrow
Hall C
Wednesday: 13:30 – 15:30

2128. Characterization of Disease Status in Magnetic Resonance Bone Marrow Scanning of Leukemia.
D. Ballon, J. Dyke, L.H. Schwartz, E. Lis, E. Schneider and A.A. Jakubowski.
Memorial Sloan-Kettering Cancer Center, New York, NY, USA and Pfizer, Inc., Groton, CT, USA.

2129. Quantitative Measurement of Bone Marrow Composition Using a Multi-Echo Gradient-Echo Sequence and 3-Point Dixon Processing.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

2130. High Resolution MR Imaging and Texture Analysis to Differentiate Osteoporotic Bone Structure.
A. Berg, M. Rotter, H. Langenberger, S. Grampp and E. Moser.
Universität Wien, Wien, Austria.

University of Amsterdam, Amsterdam, the Netherlands.

2132. Is Cancellous Bone Architecture in the Distal Radius Associated with Vertebral Fracture Load?
University of Pennsylvania, Philadelphia, PA, USA.

2133. MRS/MRS Study of the Effect of Dexamethasone on Trabecular Bone Architecture, Growth Plate and Bone Marrow in the Rabbit.
University of Pennsylvania Medical Center and Children's Hospital of Philadelphia, Philadelphia, PA, USA.

S.N. Hwang and F.W. Wehrli.
University of Pennsylvania Medical Center, Philadelphia, PA, USA.

2135. Characterization of Trabecular Bone Micro-Architecture in the Knee in Osteoarthrosis Using High-Resolution MRI.
O. Beuf, S. Ghosh, D.C. Newitt, T.M. Link, L.S. Steinbach, M. Reis, N. Lane and S. Majumdar.
University of California, San Francisco, CA, USA and Bioengineering Graduate Group, UCSF-UC Berkeley, Berkeley, CA, USA.

S. Majumdar, D. Newitt, B. van Rietbergen, M. Bredella, G. von Ingersleben, S. Harris, C. Chesnut, H. Genant and B. MacDonald.
University of California, San Francisco, CA, USA; ETH, Zurich, Switzerland; University of Washington, Seattle, WA, USA and SmithKline Beecham Pharmaceuticals, Collegeville, PA, USA.

2137. Algorithm for Measuring Cortical Bone Thickness from High-Resolution MR Images.
University of Pennsylvania, Philadelphia, PA, USA.

2138. Delineation of Metastases and Accompanying Edema in Pathologic Fractures.
University of Technology, Aachen, Germany.
Poster Sessions

MR Imaging of the Spine
Hall C
Wednesday: 13:30 – 15:30

2139. Direct Correlation of Post-Mortem Body MRI, Axial High Resolution MRI and Histopathology of the Spinal Cord in Multiple Sclerosis.
Academic Hospital "Vrije Universiteit", Amsterdam, the Netherlands.

2140. The MR Features of Spinal Cord Epidermoids.
M. Zhu, J. Dai and Z. He.
Beijing Neurosurgical Institute, Beijing, China.

Memorial Sloan-Kettering Cancer Center and Sloan-Kettering Institute for Cancer Research, New York, NY, USA.

2142. Line Scan Diffusion Tensor Imaging of the Adult Spinal Cord.
H. Mamata, Y. Mamata, F.A. Jolesz and S.E. Maier.
Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

P.N. Venkatasubramanian, B.C. Tom and A.M. Wyrwicz.
ENH Research Institute and Northwestern University, Evanston, IL, USA.

Matsusaka Central Hospital, Matsusaka, Japan and Mie University School of Medicine, Tsu, Japan.

Western Infirmary, Glasgow, UK; Western General Hospital, Edinburgh, UK and Ninewells Hospital, Dundee, UK.

2146. Planimetric Assessment of Spinal Cord Atrophy in Diabetes.
University of Sheffield and Royal Hallamshire Hospital, Sheffield, UK.

Scientific Institute H San Raffaele, University of Milan, Milan, Italy; Klinikum Grosshadern, Munich, Germany and University of Leicester, Leicester, UK.

Academic Hospital "Vrije Universiteit", Amsterdam, The Netherlands and University Medical Center, Utrecht, The Netherlands.

M. Bilgen, R. Abbe and P.A. Narayana.
University of Texas at Houston Medical School, Houston, TX, USA.
2150. **Longitudinal In Vivo Magnetization Transfer Measurements To Assess Acute Experimental Spinal Cord Injury in the Rat.**

P.J. Gareau, L.C. Weaver and G.A. Dekaban.

The John P. Robarts Research Institute, London, Ontario, Canada.

2151. **Spontaneous Functional Recovery Following Spinal Cord Injury: In Vivo MRI, Behavioral, and Histopathological Studies.**

R. Abbe, R. Vang, M. Bilgen and P. Narayana.

University of Texas-Houston Medical School, Houston, TX, USA.

2152. **NMR Properties of Rat Sciatic Nerve Following Trauma.**

G.J. Stanisz, R. Midha, C.A. Munro and R.M. Henkelman.

University of Toronto and Sunnybrook and Women’s College Health Sciences Centre, Toronto, Ontario, Canada.

2153. **T2 Changes and Walking Disability in Rat Sciatic Nerve Following Compression Injury.**

F.A. Howe, S.A. Cudlip, J.R. Griffiths and B.A. Bell.

St. George's Hospital Medical School and Atkinson Morley’s Hospital, London, UK.

Breast MR Imaging

Hall C

Tuesday: 13:30 – 15:30

2154. **Design of a High Risk Screening Study for Occult Breast Cancer in Radiographically Dense Breasts Using Magnetic Resonance Imaging with Lesion Localization Capability.**

D. Ballon, M.E. Robson, C.F. Maier, E. Schneider and E.A. Morris.

Memorial Sloan-Kettering Cancer Center, New York, NY, USA; General Electric Medical Systems, Milwaukee, WI, USA and Pfizer, Inc., Groton, CT, USA.

2155. **Incidental Enhancing Lesions (IEL) Detected during Contrast-Enhanced Breast Magnetic Resonance (MR) Imaging Scans: Incidence and Clinical Impact.**

Stanford University School of Medicine, Stanford, CA, USA.

2156. **Heterogeneity Based Accurate Differentiation Between Malignant and Benign Breast Tumours Using Logistic Regression.**

B. Issa, D.L. Buckley and L.W. Turnbull.

Hull Royal Infirmary, Hull, UK; UAE University, Al-Ain, UAE and University of Florida, Gainesville, FL, USA.

2157. **MRI vs. Histologic Measurement of Breast Cancer Following Chemotherapy: Comparison with X-Ray Mammography, Ultrasound, and Palpation.**

P.T. Weatherall, G.F. Evans, G.J. Metzger, H.M. Saborrian and M.A. Leitch.

University of Texas Southwestern Medical Center, Dallas, TX, USA and Philips Medical Systems, Dallas, TX, USA.

2158. **Elementary Clinical Estimation of DWI and ADC Value in Differentiating Benign and Malignant Breast Lesions.**

PLA General Hospital, Beijing, China and GE Medical Systems China, Beijing, China.

2159. **Apparent Diffusion Coefficient- An Additional Feature to Increase Specificity in the Classification of Breast Lesions.**

University of California, Los Angeles, CA, USA.
<table>
<thead>
<tr>
<th>Poster Session</th>
</tr>
</thead>
</table>
| **2160.** Response of Breast Carcinoma to Chemotherapy - MR Permeability Changes Using Histogram Analysis.
A.R. Padhani, C. Hayes, L. Assersohn, T. Powles, M.O. Leach and J.E. Husband.
Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, UK. |
| **2161.** Neural Network-Based Classification of Signal-Time Curves Obtained from Dynamic MR Mammographic Image Series.
R. Lucht, M.V. Knopp and G. Brix.
Federal Office for Radiation Protection, Neuherberg, Germany and German Cancer Research Center, Heidelberg, Germany. |
| **2162.** Morphological Analysis of FSPGR Breast Images Using Neural Network Computer Vision.
Hull Royal Infirmary, Hull, UK. |
| **2163.** Improved Classification of Breast DCE-MRI Using a Neural Network Ensemble.
Hull Royal Infirmary, Hull, UK. |
| **2164.** Neural Network Analysis and Visualization of Dynamic Contrast Enhanced MR Images.
Norwegian University of Science and Technology, Trodheim, Norway and Queen's University, Kingston, Ontario, Canada. |
| **2165.** Dynamic MR Imaging of Breast Cancer: Correlation Between MR Findings and Histological Subtypes.
Matsusaka Central Hospital, Matsusaka, Japan and Mie University School of Medicine, Tsu, Japan. |
Massachusetts General Hospital, Boston, MA, USA. |
| **2167.** Evaluation of Neoadjuvant Chemotherapy Response and Prediction of Survival in Locally Advanced Breast Cancer Using Contrast-MRI.
University of California, San Francisco, CA, USA. |
| **2168.** Early Effects of Breast Conservation Therapy Assessed with MRI of the Breast.
University Hospital, Tuebingen, Germany. |
Federal Office for Radiation Protection, Neuherberg, Germany and German Cancer Research Center, Heidelberg, Germany. |
| **2170.** Assessment of Gd-BOPTA as a New Contrast Agent for MR Mammography Dose Finding and Comparison with Gd-DTPA.
German Cancer Research Center (dkfz), Heidelberg, Germany; The Ohio State University, Columbus, OH, USA; University of Heidelberg, Heidelberg, Germany and Bracco, Milan, Italy. |
| **2171.** Clinical Testing of the 3TP Method for Breast MRI Diagnosis.
University of Wisconsin, Madison, WI, USA and Weizmann Institute of Science, Rehovot, Israel. |
2172. **Dynamic Magnetic Resonance Mammography Using Interleaved Dual-Echo 3D Gradient Echo Imaging.**
 Friedrich-Schiller Universität, Jena, Germany and Deutcheskrebsforschungzentrum, Heidelberg, Germany.

2173. **Image Registration of Serial 3D MR Breast Data Using Local Parameters.**
 J.R. Reichenbach, J. Hopfe, R. Lucht, W.A. Kaiser and M.E. Bellemann.
 Friedrich-Schiller University and University of Applied Sciences, Jena, Germany and Federal Office for Radiation Protection, Neuerberg, Germany.

2174. **Breast Magnetic Resonance Elastography: A New Reconstruction Technique Using MRI Derived Constraints.**
 A. Samani, J. Bishop, J. Sciarretta and D. Plewes.
 University of Toronto, Toronto, Ontario, Canada.

2175. **Automated Three Dimensional Finite Element Mesh Generation Technique of Patient-Specific Breast Using MRI Data.**
 A. Samani, J. Bishop, J. Sciarretta and D. Plewes.
 University of Toronto, Toronto, Ontario, Canada.

2176. **Quantitative Assessment of Compartmental Models Used in Contrast Enhanced MRI of the Breast.**
 University of Aberdeen and Grampian University Hospitals NHS Trust, Aberdeen, UK.

2177. **Spatio-Temporal Bandwidth-Based Segmented Acquisition for Dynamic 3D Contrast-Enhanced Breast MRI.**
 S. Krishnan, J.A. Fessler and T.L. Chenevert.
 University of Michigan, Ann Arbor, MI, USA.

Ventilation and Perfusion MRI in the Lung

Hall C

Wednesday: 13:30 – 15:30

2178. **Mapping T₁ Changes in Oxygen-Enhanced Ventilation Imaging in the Human Lung Using MIR.**
 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

2179. **Oxygen-Enhanced Ventilation MR Imaging of the Lung Using ECG-Gated Half-Fourier FSE at 0.5 T.**
 University of Occupational and Environmental Health, School of Medicine; Toshiba Medical Division, Kyoritsu Hospital; Toshiba Medical Systems Co., LTD. and Toshiba Medical Kyushu Service Co., Japan.

2180. **Strain Mapping Lung Parenchyma During Physiological Deformation Using Spin Inversion Tagging.**
 Massachusetts Institute of Technology, Cambridge, MA, USA and Beth Israel Deaconess Hospital, Boston, MA, USA.

2181. **Rapid Xenon Exchange in the Lung: Depolarization of¹²⁹Xe in the Blood Induces Gas-Phase Signal Loss.**
 K. Ruppert, J.R. Brookeman, K.D. Hagspiel, B. Driehuys and J.P. Mugler III.
 University of Virginia School of Medicine, Charlottesville, VA, USA and Nycomed-Amersham Imaging, Durham, NC, USA.
2182. Correlation of Ventilation/Perfusion Scanning Using Hyperpolarized 3He and Arterial Spin Tagging MRI with Multiple Inert Gas Elimination Technique.
University of Pennsylvania, Philadelphia, PA, USA.

2183. A Single-Acquisition Imaging Strategy in Oxygen-Sensitive 3He-MRI
University of Mainz, Mainz, Germany.

2184. Diffusion Imaging of Hyperpolarised Helium-3 in the Human Lung, with CPMG Sequences at 0.1 T.
U2R2M Orsay, France and Laboratoire Kastler-Brossel, Paris, France.

2185. SNR Analysis of Orthogonal Encoding Methods for Hyperpolarized Noble Gas MRI.
Brigham & Women Hospital, Harvard Medical School, Boston, MA, USA.

Université Claude Bernard Lyon1-CPE, Villeurbanne, France; Hôpital de la Croix-Rousse, Lyon, France; Bracco Research, Geneva, Switzerland and Institut Laüe-Langevin, Grenoble, France.

2187. Intermolecular Dipole-Dipole Relaxation of 129Xe Dissolved in Water: Implications for Spin Polarization-Induced NOE in the Lungs.
University of Pennsylvania, Philadelphia, PA, USA.

2188. Optical Flow Imaging of Rat Lung Dynamics Using Hyperpolarized Noble Gas MRI.
Brigham & Women Hospital, Harvard Medical School, Boston, MA, USA.

2189. In Vivo MRI at 0.015 Tesla Using Hyperpolarized Xenon.
Brigham and Women’s Hospital, Boston, MA, USA; Korea University, Seoul, Korea and Nassau Community College, Garden City, NY, USA.

2190. Using 129Xe Gas Exchange Measurements to Determine Surface Area to Volume Ratios in Porous Media.
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA and Brigham & Women's Hospital, Harvard Medical School and Harvard School of Public Health, Boston, MA, USA.

2191. 19F-MRI of Perfluor for Quantitative Imaging of Oxygen Tension During Partial Liquid Ventilation.
Johannes Gutenberg-University, Mainz, Germany and University of Mannheim, Mannheim, Germany.
Pre-Clinical Applications of Pulmonary MRI

Hall C
Wednesday: 13:30 – 15:30

2192. Developing Safe Breathing Protocols for Hyperpolarized Noble Gas MRI.
 Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

2193. MR Signal Intensity of the Lung Parenchyma: Comparison with Spirometrically Monitored Lung Volumes.
 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

2194. Arterial Spin-Tagging Perfusion MRI is a Sensitive Method for the Detection of Pulmonary Embolism.
 University of Pennsylvania Medical Center, Philadelphia, PA, USA.

2195. Demonstration of an Alveolar-Size Gradient in the Healthy Human Lung: A Study of the Reproducibility of Hyperpolarized 3He Diffusion MRI.
 M. Salerno, J.R. Brookeman, E.E. de Lange, J. Knight-Scott and J.P. Mugler III.
 University of Virginia School of Medicine, Charlottesville, VA, USA.

2196. Understanding the Pathogenesis of Preterm Lung Disease Using Magnetic Resonance Imaging.
 Imperial College School of Medicine, Hammersmith Hospital, London, UK.

2197. MRI in Pediatric Pulmonary Disease - Steady State Free Precession Projection (SSFP) MRI as an Alternative to the Pediatric Chest Roentgenogram? Presentation of a Clinical Study.
 Hospital for Sick Children, University of Erlangen and Siemens AG, Erlangen, Germany.

2198. Determination of Regional Lung Volumes by 3Helium-Magnetic Resonance Imaging (3He-MRI) in Healthy Volunteers and Patients After Unilateral Lung Transplantation.
 Johannes Gutenberg University, Mainz, Germany.

2199. ECG-Gated MR Imaging of the Lung Parenchyma Using 2D Short-Echo-Spacing Half-Fourier FSE.
 University of Occupational and Environmental Health, Fukuoka, Japan and Toshiba Medical Co., Tochigi, Japan.

 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

 University of Virginia, Charlottesville, VA, USA.

2202. True FISP Imaging of Lung Parachymia at 0.2 Tesla.
 M. Deimling.
 Siemens Medical Systems, Erlangen, Germany.
2203. An Ultra-Fast MR Grid Tagging Sequence for Assessment of Regional Pulmonary Deformation.
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.

2204. Imaging Pulmonary Blood Flow Pattern and Regional Perfusion Deficit Using Phase Sensitive Inversion Recovery.
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA and University of Virginia, Charlottesville, VA, USA.

2205. Pulmonary Oedema in Rat Induced by Allergen Challenge: Non-Invasive Assessment by MRI.
N. Beckmann, B. Tigani, D. Ekatodramis, R. Borer, L. Mazzoni and J. Fozard.
Novartis Pharma Inc., Basel, Switzerland.

2206. HE-3 MRI in Healthy Smokers, Non-Smokers, and Lung Transplant Recipients: Comparison with Pulmonary Function Tests.
University of Mainz, Mainz, Germany.

Shanghai First People's Hospital, Shanghai, China and GE Medical System, Hongkong, China.

2208. Inversion of the Ventricular Septum Convexity in Diastole: A Sensitive and Specific Sign of Pulmonary Hypertension.
University Hospital Vrije Universiteit, Amsterdam, The Netherlands.

Yamaguchi University School of Medicine, Ube, Japan.