Benign and atypical meningioma metabolic differences by HR-MAS molecular profiling

D. Monleon1, J. M. Morales2, J. Gonzalez3, F. Talamantes3, C. Lopez-Gines4, M. Cerda-Nicolas4, and B. Celda5,6

1Fundacion Investigacion Hospital Clinico Universitario Valencia, Valencia, Valencia, Spain, 2Unidad Central Investigacion Medicina, University of Valencia, Valencia, Valencia, Spain, 3Servicio de Neurocirugia, Hospital Clinico Universitario Valencia, Valencia, Valencia, Spain, 4Dep. de Patologia, University of Valencia, Valencia, Valencia, Spain, 5Dept. de Patologia, University of Valencia, Valencia, Valencia, Spain, 6Centro de Investigación Biomédica en Red de Biotecnología, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain

Purpose
Meningiomas are neoplasms that arise from the leptomeningeal covering of the brain and spinal cord, accounting for 15%–20% of all central nervous system tumors. Although the majority of these tumors are histologically benign, some meningiomas show signs of malignancy such as marked vascularity, loss of organoid structure, mitotic figures, nuclear pleomorphism, prominent nucleoli, focal necrosis, or infiltration to the adjacent brain [1]. The World Health Organization (WHO) classifies meningiomas into three histologic grades: grade I (benign), grade II (atypical), and grade III (anaplastic) in accordance with the clinical prognosis. Atypical and anaplastic meningiomas tend to recur. In this communication, we show differences in molecular profiles based on HR-MAS spectra of 15 meningioma biopsies for the distinction between benign and atypical meningiomas.

Samples and methods
HR-MAS 1H NMR spectra and consequent biochemical profile determination were obtained for 15 samples of human meningioma tissue, of which 11 were benign and 4 were atypical. The amount of human meningioma tissue analysed for each subject ranged from 20 to 40 mg. The whole HR-MAS study was performed at 4°C. HR-MAS spectra were recorded in a Bruker AVANCE spectrometer at 600 MHz. Samples were spun at 5KHz. Three different types of spectral editing were obtained by recording 1D 1H pre-saturation, 1D 1H NOESY and 1D 1H CPMG (30 ms echo time) experiments. 2D 1H TOCSY and 2D 13C-HSQC experiments were also recorded on selected samples for assignment purposes. 1D spectra were processed with 0.3 Hz line broadening. Central position of Alanine doublet (1.478ppm) was used for spectral referencing purposes. All samples were analyzed by post-HRMAS histopathology to assess the tissue integrity and double validate histological diagnosis.

Results
NMR spectra showed narrow line widths and adequate signal-to-noise ratios with well resolved spin-spin multiplicities, as shown in Figure 1. Resonances were assigned by methods described elsewhere [4]. The comparison among spectra shows clear differences between benign and atypical meningiomas. The phospholipids pattern and other well known signals like Alanine and Lactate seem to have some correlation with the meningioma grade. Additionally, some signals belonging to unsaturated fatty acids seem to also discriminate the two groups of tumours. PCA analysis show major difference between benign and atypical meningioma for PC1 (see Figure 2) which major contributions are Lactate, unsaturated fatty acids and the peaks in the Choline region.

Discussion / conclusion
HR-MAS allows to discriminate between molecular profiles of benign and atypical meningiomas. The use of orthogonal signal correction allows to remove spectral component which are orthogonal to the diagnosis variable (sample degradation, sample contamination, etc). Metabolic discrimination between benign and atypical meningioma according to the Principal Component Analysis, include the levels of some metabolites which can be seen by MRS 'in vivo'. These metabolites may be the basis for a non-invasive classification of benign and atypical meningioma. Addition of new cases would probably improve the outcome of the classification method.

References

Acknowledgement
Bruker Espafia S.A., Bruker Biospin and SAF 2006-06297 and eTUMOUR (FP6 LSH 2002-2.2.0-5) are gratefully acknowledged for financial and technical support. DM gratefully acknowledges a Ramon y Cajal contract from the Ministry of Education of Spain.