Arterial Spin Labeled Myocardium Perfusion Imaging with Background Suppression

Z. Zun¹, E. C. Wong², and K. S. Nayak¹

¹Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ²Departments of Radiology and Psychiatry, University of California, San Diego, La Jolla, CA, United States

Introduction
Arterial spin labeling (ASL) is widely used for assessing cerebral blood flow (CBF). However, its application to myocardial blood flow (MBF) has been limited [1-2]. Current methods may suffer from artifacts due to high LV blood signal, and from lack of measurement consistency. In this work, we investigate ASL cardiac perfusion imaging using flow-sensitive alternating inversion recovery (FAIR) [3] with background suppression (BGS) [4-5]. We demonstrate that the ASL signal follows a non-central chi distribution, and determine the number of averages needed for reliable MBF quantification. Studies performed in healthy volunteers yield perfusion rates comparable to published literature values.

Methods
Pulse Sequence: The FAIR-BGS pulse sequence is illustrated in Figure 1. BGS is expected to reduce the effects of mis-registration and ringing from high LV blood signal [6]. It is achieved using a saturation – inversion – inversion preparation scheme that is designed to suppress a broad range of T1s including myocardium (1000-1200ms) and blood (1400-1600ms) at 3 T [7]. Adiabatic saturation and inversion pulses (BIR4 and hyperbolic secant) were used to reduce sensitivity to B0 and B1 inhomogeneity. The first inversion pulse alternated between being non-selective or slab-selective to generate control and tagged images respectively. A snapshot SSFP acquisition is used for its high SNR efficiency.

Experiments were performed in four healthy volunteers on a GE Sigma 3.0T EXCITE scanner with an 8-channel cardiac coil. Imaging parameters were flip angle = 40°, TR = 3.2ms, FOV = 20cm, matrix size = 96x96, and slice thickness = 10mm. The first inversion and the center of the imaging acquisitions occur at the same cardiac phase (mid-diastole) to ensure that the inversion slab contains the imaging slice, and the calculated perfusion rate reflects average perfusion over one heartbeat.

Results
Figure 2 contains FAIR-BGS images from one representative volunteer. We acquired 4 control and 4 tagged images per breath-hold, and performed 20-50 breath-holds per volunteer. To achieve \(N_{avg} > 10000 \), pixels were averaged over all myocardium as well as over multiple breath-holds. Figure 3 illustrates the agreement between the measured distribution and predicted non-central chi distribution. The measured distribution is broader, which satisfies the same confidence interval as a function of \(N_{avg} \) for MBF measurement of 0.76 ml/ml/min for \(N_{avg}=10000 \).

Discussion
This study demonstrates initial feasibility of assessing MBF using ASL at 3 T. Confident quantification of MBF continues to be limited by SNR, even at 3 T. Possible improvements could come from more efficient tagging schemes, more SNR-efficient acquisition, or the incorporation of respiratory navigation (rather than multiple breath-holds). BGS reduces the ASL signal by roughly 50%, but also reduces potential for artifacts from the LV blood pool. It may even potentially allow for non-subtractive ASL, which would increase SNR efficiency.

References