High Spatio-Temporal Resolution pHe Mapping of a Rat Glioma Derived From pH-Dependent Spin-Lattice Relaxivity

X. Zhang1, G. V. Martinez2, M. L. Garcia-Martin1, M. Woods4, D. Sherry3, and R. J. Gillies2,6

1Biomedical Engineering, University of Arizona, Tucson, AZ, United States, 2Arizona Cancer Center, Tucson, AZ, United States, 3Instituto de Investigaciones Biomedicas, Spain, 4University of Texas at Dallas, 5University of Texas Southwestern Medical Center, 6Radiology, University of Arizona, Tucson, AZ, United States

Introduction

The extracellular pH (pHe) of cancers is acidic and inhibiting this acidity will inhibit metastases. Methods to image pH in tumors based on relaxivity of a pH-dependent contrast agent (CR), Gd-DOTA-4AmP were developed. We investigated the single injection of a mixture of DyDOTP with Gd-DOTA-4AmP. The ΔT1, and ΔT2* induced by the Gd-CR exhibited similar pH-dependence, while the pH-independent Dy-CR reduced T2* with negligible effects on the T1. Thus, with calibration, co-injection of this cocktail can enable dynamic calculation of spatially localized unique pH values. One concern with this approach was the low dynamic range afforded by gradient echo T2* imaging in vivo, because of high endogenous relaxivity. We have overcome this problem using Echo Planer Spectroscopic Imaging (EPSI); a technique that generates full 1H spectra of the water resonance for each pixel at high resolution.

Methods

The Spin-Lattice relaxivity of the CR Gd-DOTA-4AmP is sensitive to pH. CR concentration and total relaxation rate were determined simultaneously by two independent experimental observables: Spin-Spin relaxation and Spin-Lattice relaxation as shown in the protocol schematic, Figure 1. In a continuous infusion experiment, measurements were performed during co-injection of a CR cocktail composed of Gd-based CR and Dy-based CR at the molar ratio 1:2. A single radio-frequency pulse EPSI sequence is sensitive to CR-induced alterations in the in vivo magnetic microenvironment, where the change in linewidth (ΔR2*) of each spectrum is proportional to CR concentration. An in vivo calibration of ΔT2* versus Gd concentration was done in a C6 rat glioma model. The calibration part of the method (which only needs to be done once), was performed by gradually infusing pH insensitive Gd-DTPA with Dy-DOTP, and interleaving EPSI with a T1-weighted spin echo. The T1-weighted images are sensitive to Gd-DTPA, since the Gd affects the Spin-Lattice relaxation to first order, while the Dy-DOTP does not significantly affect T1. This is evident in the series of images that show enhancement of the tumor. Similarly, the Dy-DOTP has the dominant contribution to ΔT2*. The result is a correlation between ΔT2* and T1-weighted intensity, which relates back to Gd concentration. In the pH mapping part of method, pH sensitive Gd-DOTA-4AmP is co-infused with Dy-DOTP, and again monitored with interleaved EPSI and T1-weighted images. These relaxivities yield a relatively high spatio-temporal resolution pH map of the glioma. All experiments were carried out on a Bruker Biospec 4.7 T scanner, with gradients capable of 200 mT m⁻¹ strength and a maximum slew rate of 880 mT m⁻¹ s⁻¹. EPSI was performed with two spatial dimensions without the use of water-nor outer volume suppression with trapezoidal gradients and an RF excitation was a single 90° pulse. For EPSI data of 128³ points, the time resolution of a single experiment was determined by the time necessary to complete all phase encoding scans, which was 2 minutes. The resulting in plane spatial resolution was 250 μm/pt on each side with 1 mm slice thickness. The spectroscopic resolution was 3.7 Hz/pt.

Conclusions

The EPSI derived concentrations are in a reasonable range for this contrast agent which is validated by the range of molar relaxivities within the ROI, that is located within the glioma where CA extravasates. These relaxivities yield a pH map based on a pH titration of GdDOTA-4AmP in Fetal Bovine Serum phantoms as in previous work (1-5). The pH values within the glioma are acidic as is demonstrated in the histogram of Figure 2. A considerable methodological advance in the determination of tumor pH map has been demonstrated in a rat glioma. A single injection protocol consisting of slow infusion of a CA cocktail has yielded a high resolution pH map. The primary advantage of this protocol over previous studies (1-5) is the rapidity of the pH measurement, given that the calibration curve has been obtained. This high resolution pH map was achieved with a relatively modest concentration of Gd-DOTA-4AmP, which is ca. 0.20 mM (16 minutes after injection). In principle, this method is capable of yielding pH maps within practical times in a clinical setting.

References


Acknowledgments

This work was supported by NIH grants 5R01CA077575-09 and 3R01CA077575-09S1

Figure 1: Schematic overview of the single injection experimental protocol

Figure 2: pH map of tumor and responding histogram