Influence of the injection rate on vessel signal and image quality in first pass imaging with gadofosveset (Vasovist®)

H. J. Michaely1, U. I. Attenberger2, C. Fink1, M. F. Reiser2, and S. O. Schoenberg1

1Institute of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Mannheim, Germany, 2Institute of Clinical Radiology, University of Munich, Munich, Germany

Background
Due to the interaction with serum albumin the intravascular contrast agent gadofosveset is characterized by a 4-5 times higher relaxivity than standard extracellular Gd-chelates at 1.5T (1). However, only 75%-85% of gadofosveset bind to albumin. The non–bound molecules reveal a similar relaxivity as standard extracellular Gd-chelates. This implies that a maximal enhancing effect can only be achieved when the interaction between the injected gadofosveset and serum albumin takes place immediately. There are ongoing discussions at this time whether gadofosveset should be injected at a slow injection rate to allow for protein binding or whether a faster injection rate should be chose to achieve a compact bolus. Therefore, the aim of this study was to investigate the influence of different injection rates on the signal of gadofosveset-enhanced first pass MRA.

Material and Methods
In this IRB-approved prospective study 21 healthy volunteers (19-46 years, all male) were included. The volunteers were assigned to one of three age- and body-weight-matched groups. All volunteers measurements were performed at 1.5T (Siemens MAGNETOM Avanto) using a time-resolved echo-shared angiographic technique (TREAT) sequence (TR/TE – 1.96/0.68, flip angle 20°, BW 1030 Hz/px, voxel size 2x2x5mm³, parallel imaging GRAPPA 2 temporal resolution 1.7s/3D-volume). A large FOV covering the thorax and the abdomen was chosen so visualize differences in flow dynamics. The TREAT sequence was started 5s after automated contrast injection using an automated power injector. To investigate the influence of the injection rate on the enhancement three different injection rates were applied. Group 1 (n=7, mean age 29.9±7.6, mean weight 80.6kg) was injected gadofosveset (Vasovist®, BayerHealthCare) at an injection rate of 1ml/s, group 2 (n=7, mean age 30.4±4.5, mean weight 78.9kg) at an injection rate of 2ml/s and group 3 (n=7, mean age 32.0±6.7, mean weight 78.9kg) at an injection rate of 4ml/s. All volunteers were given a standard dose of 0.03mmol/kg B.W. gadofosveset (mean dose group 1 – 9.7ml, group 2 – 9.5ml and group 3 – 9.5ml).

Using ROIs, the maximal signal enhancement and hereof derived the contrast-to-noise ration (CNR) was measured in the pulmonary trunc (PT), the aortic arch (AoAr), the abdominal aorta above (SupAo) and below (InfAo) the origin of the renal arteries as well in both kidneys (Kid) and in the lung parenchyma (Lung) and the contrast to noise ratio was calculated. A subtraction method was used to measure the noise correctly despite the application of parallel imaging. The number of purely arterial abdominal frames (no enhancement from renal vein, IVC or portal vein system) was determined as well.

Exemplary frames of three volunteers with injection rates ranging from 1ml/s to 4ml/s. With all injection rates a gradual filling of the aorta and strong vascular enhancement can be appreciated. Visually, no significant differences can be appreciated.

References

Table 1 – Median CNR achieved over the field of view at the above defined sites.

<table>
<thead>
<tr>
<th>Flow</th>
<th>PT</th>
<th>AoAr</th>
<th>SupAo</th>
<th>InfAo</th>
<th>Kid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ml/s</td>
<td>365±134</td>
<td>412±72</td>
<td>310±26</td>
<td>253±38</td>
<td>180±21</td>
</tr>
<tr>
<td>2ml/s</td>
<td>486±151</td>
<td>494±136</td>
<td>328±23</td>
<td>234±91</td>
<td>166±31</td>
</tr>
<tr>
<td>4ml/s</td>
<td>424±162</td>
<td>509±189</td>
<td>344±57</td>
<td>285±57</td>
<td>196±57</td>
</tr>
</tbody>
</table>

Figure 1
Exemplary frames of three volunteers with injection rates ranging from 1ml/s to 4ml/s. With all injection rates a gradual filling of the aorta and strong vascular enhancement can be appreciated. Visually, no significant differences can be appreciated.