Myocardial first pass perfusion imaging with integrated parallel acquisition (iPAT): A Comparison of TrueFISP and TurboFlash Sequences

D. Theisen1, B. Wintersperger1, A. Huber1, O. Dietrich1, M. F. Reiser1, S. O. Schoenberg1
1Department of Clinical Radiology, University of Munich, Munich, Bavaria, Germany

Purpose: To assess the value of integrated partially parallel acquisition (iPAT) in 2D SR-GRE and SSFP sequences for myocardial first-pass perfusion imaging by means of artifacts, signal-to-noise ratio (SNR), contrast-to-noise (CNR) ratio and semiquantitative perfusion parameters.

Materials and Methods: In twenty healthy individuals, contrast-enhanced (Gd-DO3A-butriol) perfusion imaging was performed with SR-TurboFlash and TrueFISP sequences with integrated partially parallel acquisition (R=2) using GRAPPA (Generalized Auto-calibrating Partially Parallel Acquisition) algorithm for image reconstruction. As standard of reference served a non-accelerated SR-TurboFLASH sequence. Artifacts were assessed quantitatively and qualitatively. Furthermore, SNR and CNR were calculated and semiquantitative perfusion parameters were determined from signal intensity (SI) time curves.

Results: Phantom measurements yielded increased SNR (157 ± 11%) and CNR (154 ± 12%) values for True-FISP in comparison with both TurboFLASH sequences.

In volunteer studies, SNR/CNR were consistently higher (p<0.0001) in TrueFISP (12.2 ± 4.1/4.7 ± 3.0) than in accelerated (9.5 ± 3.5/3.5 ± 2.8) or standard (11.9 ± 4.3/4.4 ± 3.6) TurboFLASH images. The evaluation of semiquantitative perfusion parameters Maximum Upslope and Peak Signal Intensity yielded significantly highest values for TrueFISP images (p<0.0001, figures 1 and 2). A qualitative examination of all images for artifacts by two board-certified radiologists yielded significantly more susceptibility artifacts in non-accelerated TurboFLASH images (p<0.001) than in the iPAT sequences, in which differences in number of artifacts were statistically non-significant. Interobserver variability was low (r=0.91, slope=1.1, p<0.0001).

Conclusion: Saturation-recovery TrueFISP sequences in combination with integrated parallel acquisition provide better image quality and higher SNR and CNR than TurboFLASH sequences in myocardial first-pass perfusion imaging. The application of parallel acquisition techniques leads to a significant decrease in susceptibility artifacts in comparison with the established non-accelerated TurboFLASH technique.

Figure 1 and 2 Comparison of Maximum Upslope and Peak Signal Intensity, calculated separately for each myocardial segment. Input: left ventricular cavity; a: anterior; al: anterolateral; il: inferolateral; i: inferior, is: inferoseptal; as: anteroseptal.