Transverse Relaxation Mechanisms in Articular Cartilage

V. Mlynárík1, P. Szomolányi2,3, R. Toffanin4, F. Vittur3, F. Gruber5, S. Trattnig1

1MR Centre, University of Vienna Medical School, A-1090 Vienna, Austria, 2Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia, 3Dept. of BBCM, University of Trieste, Trieste, Italy, 4PROTOS Research Institute, Trieste, Italy, 5Orthopedic Hospital Gersthof, Vienna, Austria

Introduction. The role of T_1 as a marker of early stages of osteoarthritis is not yet clear. It was suggested that the relaxation times in the rotating frame (T_1) are sensitive to the loss of proteoglycans (PG) and can be used for quantifying early degenerative changes of articular cartilage (1-4). However, Menezes et al. (5) found no correlation of the cartilage T_1 with PG concentration. Duvvuri et al. reported that the dominant T_1 relaxation mechanism at low spin locking fields is proton exchange between NH and OH groups and water, which is affected by the loss of PG (6). On the other hand, Shinar et al. (7) concluded that the dominant transverse relaxation mechanism is intramolecular dipolar interaction due to interaction of water molecules with the oriented collagen fibers. Thus, we measured T_1 and T_2 in a cartilage specimen from a human femoral condyle, both in the deep part of the cartilage layer with radially oriented collagen fibers and in its transitional zone with variably oriented collagen fibers, at various spin locking field amplitudes (T_1 dispersion), at different orientation of the specimen in the magnetic field and at different static magnetic field strengths.

Materials & Methods. The measurements were performed on a 3 T Bruker Medspec whole body scanner and on a 7 T Bruker AM 300 WB spectrometer, which were equipped with microimaging gradient systems. The T_2 relaxation times were calculated from series of single spin echo images (TR/TE = 1500/6-26 ms). The T_1 relaxation times were obtained using the spin-locking preparation sequence followed by a gradient or a spin echo sequence, using the spin locking times of 5-30 ms and the amplitudes v_1 of 300-2500 Hz (3 T) or 1000 Hz (7 T).

Results & Discussion. A significant R_1 dispersion as well as orientation dependence of R_1 in the radial zone of articular cartilage was observed at 3 T, with the maximum dispersion found at the angle of 0° and the minimum dispersion at 55° (Fig. 1a). However, we found that there was almost no dispersion and no orientation dependence in the transitional zone (Fig. 1b). Thus, the dominant relaxation mechanism in the radial zone is dipolar and is related to the oriented collagen fibers. A significant contribution of dipolar relaxation can also be expected in the transitional zone due to the random orientation of the collagen fibers. The negligible dispersion of R_1 between v_1 = 300 and 2500 Hz suggests that the dominant contributing relaxation mechanisms have their correlation times outside this range. Hence, the dominant contribution of the scalar relaxation due to exchange between OH and NH protons with water is highly improbable as it should cause significant R_1 dispersion in the studied range of v_1 (6). The magnitude of the scalar contribution was estimated from the relaxation rates at 3 T and 7 T (Fig. 1a,b), based on its quadratic dependence on B_0, and was found to be about 1.6 s$^{-1}$ at 3 T (only 10% or less of the total R_1 at v_1 = 1000 Hz).

The R_2 values showed the expected orientation dependence caused by collagen-related dipolar interaction with structures having very slow motion. However, the B_0 dependence was nonuniform. This seems to be due to multicomponent decay of the magnetization, which is different at both fields (Fig. 2). In summary, the dominant relaxation mechanism in the rotating frame in cartilage at B_0 ≤ 3 T is probably dipolar interaction, in particular its component associated with the oriented collagen fibers. The multicomponent character of the T_2 magnetization decay might be responsible for discrepancies between previous in vitro and in vivo T_2 studies.

References

![Fig. 1. R_2 and R_1 dependence on v_1, orientation of the specimen, and B_0 in radial (a) and transitional (b) part of cartilage](image1.png)

![Fig. 2. Nonexponential (open circles, 3T) and exponential (filled circles, 7T) T_2 magnetization decay](image2.png)