A fast acquisition method for 3D displacement and strain imaging

D. D. Steele1, T. L. Chenevert2, S. Y. Emelianov3

1Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; 2Radiology, University of Michigan, Ann Arbor, MI, United States; 3Biomedical Engineering, University of Texas, Austin, TX, United States

Introduction

Elasticity imaging offers a means for quantitating tissue hardness. It has been shown that although this hardness may relate to disease state [1], a three-dimensional (3D) elasticity reconstruction is necessary to provide an elasticity map that is both geometrically and quantitatively accurate [2]. In order to perform a 3D reconstruction, one must measure the full 3D displacement vector, \(\mathbf{u}(r) \). Although a fast, two-dimensional (2D) displacement vector acquisition based on stimulated echoes (STEs) has been developed (meta-DENSE) [3], its T2* sensitivity makes it difficult to apply directly to volumetric imaging. Exceedingly long acquisitions (over 3 hours) were therefore required to measure a complete \(\mathbf{u}(r) \) using STEs. Here we present a modification to meta-DENSE which removes its T2* sensitivity, allowing it to be applied to 3D imaging. Using this modification we have acquired a 128x128x16 map of \(\mathbf{u}(r) \) in just 16 minutes while increasing the average displacement error per voxel from approximately 14 \(\mu \)m to 19 \(\mu \)m.

Theory

The meta-DENSE sequence consists of a STE spin preparation followed by a train of \(\pi \) pulses. It produces a 2D displacement image wherein voxel’s phase, \(\phi \), is given as \(\Phi_0 \cdot \mathbf{u} + S_1 \), where \(\Phi_0 \) is the displacement sensitivity [rad/mm], \(\mathbf{u} \) is the displacement vector [mm], and \(S_1 \) is the phase due to the T2* sensitivity of the sequence [rad]. \(S_1 \) is proportional to \(\tau_1 \), the separation between the first two \(\pi/2 \) pulses. If there are large inhomogenieties or susceptibility differences across a voxel, then intravoxel dephasing due to \(S_1 \) may destroy the signal from that voxel. Using the coherence pathway phase-graph technique [4], it is apparent that a signal free from \(S_1 \) contamination may be obtained simply by displacing the read-out window so that it is centered about a time \(\tau_1 \) sec before \(T_E/2 \), where \(T_E \) is the spacing between \(\pi \) pulses. Due to its T2* insensitivity, this displaced-echo meta-DENSE (demeta-DENSE) sequence may be applied to volumetric as well as thick-slice imaging.

Methods

A silicone gel phantom, measuring 80x80x160 mm3 and containing a single, hard conical inclusion was imaged using the demeta-DENSE sequence. The phantom was subjected to a mild pre-load, and a 128x128x16 image was taken over a 110x75x20 mm3 field-of-view in \(x \), \(y \), and \(z \), respectively. The repetition time was 1 sec, the mixing time 150 ms, \(T_E \) was 14.5 ms, and \(\tau_1 \) was 2.6 ms. All read-out windows were therefore centered around a time 4.65 ms after each \(\pi \) pulse. The displacement sensitivity was 1.70 \(\pi \)mm in the read-out \(x \) direction, and 2.04 \(\pi \)mm in both the first phase-encode \(y \) and second phase-encode \(z \) directions. A series of 8 images was taken at each echo-train length (ETL) from 2 to 16 echoes. A series from a similarly sensitive STE sequence was taken as a control. The standard deviation of the phase maps, appropriately masked, was taken across all 8 realizations for each ETL and encoding direction. This was then spatially averaged to yield a displacement error estimate for each ETL and encoding direction.

Results

Figure 1 shows representative magnitude (a and b) and phase images (c and d) from the \(x \)-encoded displacement data from the control (a and c) and ETL=16 (b and d) experiments. Although there is clearly more blur and noise in the ETL=16 image, the average displacement error is only ~35% greater than in the control (19 vs 14 \(\mu \)m).

Discussion and Conclusions

3D demeta-DENSE clearly offers great temporal advantages over standard 3D STE acquisitions, bringing the time to acquire a 128x128x8 3D displacement-encoded image to a clinically feasible 16 minutes with an ETL of 8. However, because of the displacement encoding gradients located between every \(\pi \) pulse, demeta-DENSE exhibits more susceptibility to motion artifact than STEs. Additionally, demeta-DENSE requires larger inter-echo spacing (by \(\tau_1 \)) than meta-DENSE, enhancing blur due to T2 decay when compared to meta-DENSE. Finally, it is likely that this T2 blur will dominate the displacement estimation errors when compared to inherent phase instability errors. This will be the subject of continued investigation.

References