P. G. Henry¹, G. Oz¹, R. Gruetter¹

¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Recent improvements in ¹H-localized ¹³C spectroscopy allowed localized broadband detection of ¹³C resonances over a 85ppm bandwidth in the rat brain *in vivo* with excellent sensitivity. These advances were exploited to detect of several resonances not previously observed *in vivo*, and their tentative assignment to [3-¹³C]serine, [1-¹³C]fructose and [1-¹³C]glycerol-3-phosphate using high-resolution 1D and 2D NMR spectroscopy (HSQC-TOCSY) of brain extracts. These compounds are labeled due to reactions closely associated with glycolysis and thus open a new non-invasive window on glycolytic reactions.

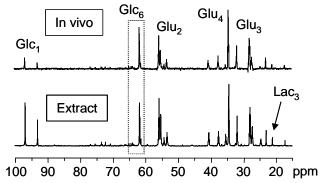
Introduction

It was recently reported that ¹H-localized ¹³C detection using semi-adiabatic polarization transfer results in improved sensitivity and minimal chemical-shift displacement error when measuring ¹³C spectra in the rat brain at 9.4T (1). In particular, good localization performance resulted in the complete elimination of natural abundance extracerebral glycerol signals in the 60-70ppm region. The goal of this study was to examine if the improved sensitivity, localization and spectral range in ¹³C spectra allowed detection of previously undetected resonances in this spectral region and to assign these resonances using two-dimensional NMR methods.

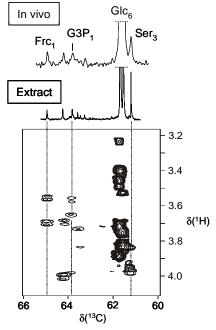
Methods

In vivo 13 C spectra were acquired at 9.4T from the rat brain using a previously described 1 H-localized 13 C polarization transfer sequence (1) during an infusion of 70%-enriched [1,6- 13 C₂]glucose under α -chloralose anesthesia. Immediately after the *in vivo* acquisition, brains were funnel-frozen and dissected under intermittent liquid nitrogen to minimize post-mortem metabolic changes, and metabolites were extracted with perchloric acid. 1D 13 C spectra and 2D 1 H{ 13 C} HSQC-TOCSY spectra were measured from brain extracts at 600MHz.

Results and Discussion


In vivo ¹³C spectra were strikingly similar to extract spectra (Fig. 1). Signals detected *in vivo* included not only strong multiplets from glutamate, glutamine, aspartate and glucose, but also weaker signals from NAA, GABA, myo-inositol and glutathione, the assignment of which was confirmed by 2D-NMR. Three hitherto unreported resonances at 61.3ppm, 63.8ppm and 64.9 ppm were also detected when infusing ¹³C-labeled glucose. These resonances were not detectable in natural abundance spectra (not shown). Based on HSQC-TOCSY and published chemical-shift values (2,3), the carbon at 61.3ppm was tentatively assigned to [3-¹³C]serine ($\delta(^1H)$) = 3.95ppm and 3.83ppm). The ¹³C resonance at 63.8ppm coupled to a ¹H spin system with $\delta(^1H)$ = 3.57ppm and 3.67ppm, consistent with the glycolytic intermediate [1-¹³C]glycerol-3P. The ¹³C resonance at 64.9ppm coupled to ¹H at 3.5ppm and 3.71ppm consistent with [1-¹³C]fructose. A fourth, currently unassigned resonance was detected at 64.2 ppm. In conclusion, the non-invasive detection of serine and glycolytic intermediates opens new perspectives for measuring brain metabolism at the level of glycolysis.

References


- 1) Henry et al., Proc. Intl. Soc. Magn. Reson. Med. 10, (2002)
- 2) Willker et al., J. Magn. Reson. Anal. 2,21 (1996)
- 3) http://www2.swmed.edu/rogersmr/chemical shifts.htm

Acknowledgements

S. Crawford and K. Yue for technical assistance. Supported by NIH R01NS38672, NIH P41RR08079 and the Keck Foundation. Funding for the high-resolution NMR facility was provided by the University of Minnesota Medical School, NSF (BIR-961477) and MMF.

Fig. 1. Localized *in vivo* ¹³C spectrum (top) and extract spectrum after funnel-freezing from the same animal. The extract spectrum was line-broadened to match the *in vivo* linewidth. Note the low lactate signal and the high Glc₆ signal on the extract spectrum, indicating minimal post-mortem metabolism. Glc₁ appears lower *in vivo* due to off-resonance effects.

Fig. 2. Expansion of 1D spectra around 63ppm (top 2 spectra) and corresponding region in a 2D ${}^{1}H\{{}^{13}C\}$ HSQC-TOCSY (bottom) at 600 MHz.