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Abstract We describe a method for selecting design parameters 
in fMRI that maximizes statistical power and psychological 
validity. Our approach uses a genetic algorithm (GA), a class of 
flexible search algorithms that optimize designs with respect to 
single or multiple measures of fitness. We consider three fitness 
measures: contrast estimation efficiency, hemodynamic response 
estimation efficiency, and stimulus sequence counterbalancing. 
Although there are inherent trade-offs between these three fitness 
measures, our GA optimization produces designs that are well 
above random designs on all three criteria simultaneously. 

Introduction 
Block designs offer as much as a 1O:l statistical power advantage 
over randomized, single-trial designs in fMRI studies (1). 
However, these designs do not allow researchers to estimate the 
hemodynamic response, and their predictable nature makes them 
psychologically unsatisfactory for many tasks. Optimized, 
pseudo-random designs can provide a balance between statistical 
power and psychological interpretability. 

Previous approaches to optimization have considered a 
MITOW range of possible parameter values and design types, often 
excluding factors such as temporal autocorrelation of fMRI noise, 
nonlinearity in observed signal, the presence of multiple 
conditions and multiple contrasts of interest within a single 
experiment, experiment-related factors such as psychological 
probes that influence the design but are difficult to model, and 
factors such as counterbalancing of stimuli and repeated 
presentations that influence the psychological validity of the task 
(1,2,3,4). The flexibility of the genetic algorithm as an 
optimization tool, combined with novel methods for estimating 
signal nonlinearities, allows us to circumvent all of these 
limitations. 

Two strengths of the GA framework are that a) it 
operates with flexible inputs, allowing for very specific modeling 
of experimental conditions, including non-standard trial types and 
experimentally observed scanner autocorrelation, and b) it is 
flexible with respect to fitness criteria, allowing optimization over 
known or novel fitness measures. We describe how genetic 
algorithms may be applied to design for fMRI, and we use the 
framework to explore the space of possible fMRI design 
parameters, with the goal of providing information about optimal 

design choices for several types of designs. In our simulations, we 
considered three fitness measures: contrast estimation efficiency, 
hemodynamic response estimation efficiency, and stimulus 
sequence counterbalancing. 

Methods 
We defined efficiency as the inverse of the variance of the contrast 
estimates (2,5), computed as: 

5 = 1/ (wCz-SV,sTzCT) 

Where Z- is the pseudoinverse of the filtered model matrix, S is 
the smoothing filter applied to the model and data, C is a matrix of 
contrasts of interest, Vi is the intrinsic (noise) autocorrelation 
matrix, and w is a user-input weighting function for contrasts 
indicating the relative importance of each contrast of interest in 
the study. For contrast estimation efficiency, the model matrix Z 
contains delta functions for each trial type convolved with a 
canonical hemodynamic response function (HRF). For HRF 
estimation efficiency, the model matrix is a deconvolution matrix 
that estimates a 12 s hernodynamic response for each trial type. 
Higher efficiency (5) scores indicate lower error variance and 
greater signal to noise ratio. 

Counterbalancing fitness is measured by the sum of 
squared differences between the actual and ideal frequencies with 
which each trial type follows each other one, up to k time steps 
back. 

Results and Discussion 
Figure 1 compares random designs (lines) with GA optimized 
designs and block designs (points) on all three fitness measures. 
GA optimizations were performed for single fitness measures 
contrast efficiency (ew, HRF estimation efficiency (hrf), stimulus 
order counterbalancing (cbal), or combinations of these. 

Previous research has suggested that there is a direct 
trade-off between power to detect a contrast estimate the shape of 
the HRF (4). Our simulations reflect this limitation (Fig.1: cf. 
block & HRF), but show that we can obtain designs that possess 
efficiency for both contrast and HRF estimation (Fig. 1: eff hrf). 
In addition, the GA procedure is much more effective than a 
random search of the design space. 
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