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Abstract 
Temporal coherence of low frequency oscillations characterizes the 

mammalian brain, even when no explicit cognitive tasks are performed. 
Functional connectivity MR imaging is used to map regions of the resting 
brain showing synchronous, regional and slow fluctuations in cerebral 
blood flow and oxygenation. We use a hierarchical clustering method to 
detect similarities of low-frequency fluctuations and describe one measure 
of correlations in the low frequency range for classification of resting- 
state fMRI data. For all cortical regions studied and clusters obtained, we 
quantify the degree of contamination of functional connectivity maps by 
the respiratory and cardiac cycle. 

Introduction 
In functional connectivity MR imaging [l-31, functionally related regions of 

the brain are identified by measuring the temporal correlation of spontaneous 
low frequency fluctuations in their MR signals while the subject is in a “resting” 
state. While the feasibility of resting-state fMRI has been demonstrated in 
several papers, functional connectivity is incompletely characterized with the 
standard “seed voxel” method. To reduce reader bias, functional connectivity 
data should be analyzed by means of a model independent method. 

In the present work we applied a hierarchical clustering algorithm to find 
clusters whose voxel members have high cross correlation coefficients that 
indicate low frequency synchronous fluctuations in the fMRI signal. We use the 
synchrony to infer functional connectivity. This method does not require prior 
knowledge of cluster centers or the number of clusters present in the data. Our 
approach represents a first attempt to define an appropriate distance measure for 
analyzing resting-state data to partition all possible cross-correlation coefficients 
from multi-slice data into meaningful patterns of functional connectivity. 
Fufiermore, this approach permits an evaluation of the effects of hardware (i.e. 
gradient) instabilities and magnitudes of motion-induced correlations on 
connectivity data. 

Theors 
A hierarchical clustering algorithm based on the sinnle link method was 

used. AS an appropriate similarity measure to group voiels into clusters for 
functional connectivity, we specified a new distance measure, which is based 
on the correlation coefficient of EPI-time series restricted to very-low 
frequencies ( 4 . 1  Hz). In order to accomplish this, the spectral decomposition 
of all correlations between two voxels in the brain must be computed. The 
spectral decomposition of the correlation coefficient “cc,(q,q 1 “ has the property 
that the sum over all frequencies will yield the correlation coefficient between 
voxels q and q’: 

where 

labels the Fourier component (with frequency f) of the correlation coefficient 
between voxel q and voxel q’. The term D represents the product of the norm of 
the time courses for voxels q and q: As a relevant distance measure d(q,ql for 
the clustering between voxel q and voxel q‘ we propose 

(3) 
j = o  

The value of this distance measure ranges between 0 and 1 (for positive 
correlations), and it decreases as the very low frequency contrihutions in the 
correlation coefficient increase. 

Methods 
Four normal male volunteers, ranging in age from 20-25 years and claiming 

to be in good health, participated in this study. Each subject was instructed 
before the scanning session to be as motionless as possible during the EPI 
acquisitions, to keep his eyes closed and refrain from any cognitive exercise. 
MR scanning was performed in a commercial 1.5 T LX scanner (General 
Electric, Waukesha) equipped with high-speed gradients and a standard 
birdcage head coil. Standard anatomical whole brain images were acquired. Six 
resting-state gradient-recalled EPI scans (epibold) were performed in the 
coronal plane with parameters: 4 slices, 64x64 matrix, TR/TE 4OOms/SOm, flip 
angle SO deg, FOV 24 cm, slice thickness 7 mm, 2mm gap, 1300 time frames, 

BW +/-62.5 kHz. The locations of the slices were chosen for each resting-state 
scan differently, so that auditory cortex, motor cortex and visual coItex were 
included. The high sampling rate was selected to be able to resolve cardiac 
oscillations. At a TR of 400ms, the Nyquist frequency is given by 1/2TR=1.25 
Hz. Therefore, oscillations that are below this frequency will not alias. Both 
respiratory and cardiac rates were recorded using a flexible respiratory belt and 
a pulse oximeter. Aliasing of the cardiac rate was eliminated by the choice of a 
TR of 400 ms. The EPI scan duration was 8 min 40 sec. 

In addition, four different phantoms (GE QA phantom, water melon, 
customized brain-like phantom, formaldehyde fixed human brain (post- 
autopsy)) were scanned with identical EPI parameters to assess hardware 
(gradient) instabilities. 

Results and Discussion 

hardware instabilities. For the customized brain phantom linear and angular 
displacements were required to register the data. The linear displacement in the 
I-S direction is the dominant artifact. The scanner drift is present during the 
entire scan and has a constant slope of 0.067mm/min. A slope of similar 
magnitude has also been found in human data. Clustering of the registered 
phantom data produced two clusters corresponding to small correlation 
coefficients. 

voxels) gave reproducible patterns in the sensorimotor cortex, thalamus, 
primary visual cortex, fusiform gyrus, primary auditory cortex and Broca’s 
area. As typical examples, Fig.1 shows readily identifiable patterns in one 
subjezt, AU clusters were obtained by considering only frequency contributions 
less than 0.1 Hz (after Gram-Schmidt orthogonalization with the major motion 
functions from the registration). These patterns could be obtained in several 
different resting-state scans and the cluster locations were stable and reliable. 
Besides these patterns, other non-stationary patterns could he found. These 
patterns were obtained in a particular resting-state data set and could not be 
reproduced in other data sets of the same subject. However, analysis of possible 
motion contribution for these clusters gave insignificant numbers and does not 
provide a sufficient explanation.The role of cardiac and respiratory frequencies 
in the clusters was analyzed by computing the integral of the average 
differential correlation coefficient from 0 to frequency f for all clusters. If 
respiratory and cardiac effects contaminate voxels in specific clusters, a step- 
like increase in the slope at the respiratory range (0.2-0.3 Hz) and cardiac range 

Artifacts resembling motion were present in all phantom data due to 

For buman studies most of the major clusters (that contained more than 4 
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in the sensorimotor cortex (left), thalamus (middle) and fusiform gyrus (right). 

Conclusion 
The present study demonstrates that physiologically predictable patterns of 

correlations in low-frequency oscillations can be found in resting-state fMRI 
data by a hierarchical clustering methodology. A requirement for measuring 
connectivity with the method has been described. The method is “data-driven”, 
meaning that the data themselves determine the natural divisions in the data set 
for functional connectivity. The approach is more powerful than the “seed- 
voxel” method in resting-state data analysis where the user selects a group of 
voxels and probes for all possible neuronal connections via cross correlation to 
the seed voxels. We have shown that most clusters are not contaminated by 
respiratory or cardiac noise sources and are characterized only by large 
correlations of low frequency components. Furthermore, we investigated the 
contribution of motion artifacts from scanner instabilities as well as subject 
motion on functional connectivity maps and illustrated a method to eliminate or 
reduce artifacts from resting-state data sets. 
References 
1. Biswal B, et al. MRM 1995; 3: 537-541 (1995). 
2. LoweMJ, et al. Neuroimage; 2: 119-132 (1998). 
3. Xiong J, et al. Human BrainMapping; 8:151-156 (1999). 


	© Proc: 
	 Intl: 
	 Soc: 
	 Mag: 
	 Reson: 
	 Med: 
	 10 (2002): © Proc. Intl. Soc. Mag. Reson. Med. 10 (2002)








