Border and Texture Descriptors for Breast MRI Lesions
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Introduction

Mammography is the first line imaging technique for the detection and
diagnosis of breast cancer. However, it misses about 10% of cancers,
especially those in dense breasts. In the recent years, magnetic
resonance imaging (MRI) in combination with T1 enhancement using
Gd-DTPA as a contrast agent, has emerged as an adjunctive imaging
modality to mammography. While it has been widely observed that, in
general, malignant lesions enhance quicker and more intensely than
benign lesions, it has also been observed that several benign lesions
like fibroadenomas enhance equally fast. So, it is not possible to base
the diagnosis of a lesion primarily on its contrast uptake
characteristics. Although, computer-aided classification of benign
versus malignant lesions, using border and texture descriptors has been
widely used in mammography, relatively few similar studies have been
performed for lesions seen on breast MRI [1-2]. The focus of this
paper is to compare the performance of different border and texture
descriptors in distinguishing benign from malignant lesions on breast
MRI images.

Methods

46 lesions from 44 cases of known pathology (21 benign, 26
malignant) were selected from patient records at the Department of
Radiology, University of Pennsylvania. The MRI images were
acquired with a 3D fat-suppressed radiofrequency-spoiled gradient
echo sequence on a 1.5T system with a General Electric Signa console.
The images used in this study were obtained during the first 90
seconds following the delivery of a 20 cc bolus of Gd-DTPA. The
resulting sagittal images consisted of 512x512x28 voxels and were
obtained from an acquisition matrix of 512x512x32. For each test case,
single 2D slices approximately at the center of the lesion were selected
from the precontrast and first postcontrast images. Difference images
were obtained between the first postcontrast and the precontrast. Since
the difference image contained additional information about the
lesions, both the difference and first postcontrast images were used for
further analysis. An interactive region growing algorithm was used to
segment the lesions from the background on the difference images.
The obtained mask was used to define the region-of-interest both on
the first postcontrast image as well as the difference image. The
following border measures were evaluated on the segmented lesions:
margin fluctuation (MF), tumor boundary roughness (TBR) [3],
temperature and entropy obtained from 2D geometric surface
temperature (GST) measurements (Tgst, Egst). Two additional
measures were the difference between the boundary length of the
lesion and the convex hull of the lesion divided by the convex hull
boundary length (FCHL), and the difference between the area enclosed
by the convex hull of the lesion and the lesion area divided by the
convex hull area (FCHA). For these two additional measures, the
lesion boundary was filtered to smooth small changes in boundary
fluctuations because of region growing prior to their calculation. The
following texture measures were evaluated on the region inside the
segmented lesions: mean and variance, a selected set of 5 Laws
descriptors (variance values of L7L7, E7E7, W707 and R707 as well
as the mean of L7E7, a selected set of 4 Haralick's descriptors
(correlation, difference entropy, entropy and inertia), temperature and
entropy obtained from 3D GST measurements, and a fractal measure
using box-counting [4]. In the case of texture measures, values of these
descriptors were obtained for both difference images and the

and Fractal), we used logistic regression analysis to build models for
each family. Since the sample size for this analysis is small, we used
various methods (i.e. Principal component analysis, correlation
analysis, and univariate analysis) to reduce each family to at most two
descriptors before modeling. Then we estimated the ROC areas using
maximum likelihood methods and tested the hypothesis that the ROC
area equals 0.51. We investigated the possibility of creating models
from combinations of post and difference descriptors, as well as
combinations of texture and border descriptors.

Results

The best discriminators are the models fit from the border descriptors
(see Table). Amongst border descriptors, the model with margin
fluctuation was not statistically significantly different from 0.5. All
other descriptors have ROC areas signficantly greater than 0.5. Tgsr,
Egst and FCHL are highly correlated. There is no combination of two
border descriptors that gives a statistically significant improvement
over just a single descriptor. Amongst texture descriptors obtained
using postcontrast images, ROC areas for all models except that
obtained with the Haralick descriptor, entropy, (ROC area (SE): 0.687
(0.078)) were not statistically significantly different from O0.5.
Amongst texture descriptors obtained using difference images, ROC
areas for all models except that obtained with the Haralick descriptor,
difference entropy DEgar (ROC area (SE): 0.717 (0.074)) , were not
statistically significantly different from 0.5. No combination texture
descriptor model was better than a univariate model using only
DEgagr. No combination model with DEgag and each of Tgst, Egst
and FCHA proved to be significantly better than the individual border
descriptors themselves.

Discussion

Future research will focus on testing more border and texture
descriptors than those reported in this study. Future research will also
focus on extending the calculation of descriptors over the entire 3D
lesion volume. In this analysis only the first postcontrast image was
used. Since a typical patient examination may consist of several
postcontrast images, use of all these in conjunction could provide
better discrimination. Due to the small sample size, we were able to
only build models with at most two descriptors. A larger sample size
would improve our ability to produce models that are good
discriminators.
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postcontrast images. For all descriptors, we computed the mean and (Standard Error)
standard deviation (SD) by lesion type. For each border descriptor we
estimated the area under the ROC curve using maximum likelihood MF 0.5390 (0.894) 0.660
methods. We tested the null hypothesis that the ROC area equals 0.5, TBR 0.7689 (0.0685) <0.001
versus the alternative hypothesis that the ROC area is different from Tgst 0.8009 (0.0641) <0.001
0.5 using a z-test (two-tailed). A significance level of 0.05 was used. Egst 0.8009 (0.0641) <0.001
For descriptors with ROC area significantly greater than 0.5, we FCHL 0.8009 (0.0641) <0.001
performed pairwise comparisons. Lastly, we compared nested logistic
regression models using a likelihood ratio test to identify models that FCHA 0.7045 (0.0759) 0.007
were combinations of these border descriptors. To identify the best
model for each family of texture descriptors (i.e. Law, Haralick, GST
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