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Introduction
A number of methods have been proposed to speed up T2 mapping

(1-3). The common approach is to reduce the number of sampled
points along the relaxation curve. In the case of mono-exponential
decay, two images at different echo times provide sufficient data to
determine the T2 decay and the scaling constant on a pixel-by-pixel
basis. In this study, we propose a more efficient way of T2 mapping by
taking advantage of the correlations among nearby pixels. We show
that such prior information can be used to reduce the data requirement
substantially. A new reconstruction algorithm is proposed, which is
capable of obtaining in vivo mono-exponential T2 maps using data
from only one and a quarter images. The new algorithm is called
SLIM-BLAST. "SLIM" stands for Signal Localization by IMaging (4),
and "BLAST" stands for Broad-use Linear Acquisition Speed-up
Technique (5).

Theory
Mono-exponential T2 maps were created from the ratio between an

early- and a late-echo image. The early-echo image was obtained by
acquiring 100% of its k-space data and applying inverse Fourier
transform. It was then used as prior information to reconstruct the late-
echo image, for which only 25% of the phase encode lines were used.
The reconstruction of the late-echo image involved 4 steps:
1. Inverse Fourier transform: The frequency encoding direction was
reconstructed conventionally, by inverse Fourier transform. Then, each
image column along the phase encoding direction was reconstructed
separately in subsequent steps.
2. SLIM step: For each image column along the phase encoding
direction, the early-echo image was divided into a small number of
segments. The late-echo image was then approximated as a linear
combination of these segments using SLIM (4). The SLIM equations
were solved using Truncated Singular Value Decomposition (TSVD),
with the condition number kept below 50 to prevent excessive noise
amplification. Segmentation of the early-echo image was performed by
an automatic algorithm, which iteratively selected the most prominent
intensity edges until there were 6 segments per image column. All
background and bone segments (as identified by intensity
thresholding) were counted as a single non-contiguous segment, as
were all fat and marrow segments.
3. BLAST step: BLAST (5) is based on the Generalized Series model
(6). It models the reconstructed image ρ(x) as:

ρ(x) = Rstatic(x) + (Rdynamic(x) + λ) × ∑ ci exp(-2π x ki)
where Rstatic(x), Rdynamic(x), λ, and ci represent the static reference
image, the dynamic reference image, regularizer, and basis
coefficients, respectively. In the present case, Rstatic(x) was chosen to
be the reconstructed image from SLIM. Rdynamic(x) was used to
highlight regions where the SLIM reconstruction might differ from the
true image. In general, most of the SLIM reconstruction errors were
located at tissue boundaries, due to inaccuracies in segmentation.
Therefore, Rdynamic(x) was chosen to be the gradient magnitude of the
early-echo image, normalized to 1. λ was set empirically to 1%. In
general, the value of λ could be chosen from the data by cross
validation (7), albeit at the expense of increased computation. The
basis coefficients ci were determined by fitting the above equation to
the measured k-space data. The solution was obtained by TSVD with
the condition number kept below 15.
4. Filtering and data consistency: The effect of the above
reconstruction steps was to extrapolate data in the unmeasured portion
of k-space. As with any extrapolation, the extrapolated data become
more error-prone as one moves farther from the measured portion of k-
space. This error was reduced by gradually tapering the extrapolated
data to zero towards the outer edges of k-space with a Hamming filter.
Data consistency was enforced by replacing the measured portion of k-
space with the actual measured data.

Methods
Axial images were acquired from the lower legs of 5 human subjects.

For each subject, seven 256×128 (frequency × phase) spin-echo
images were acquired with TR=600ms and TE=24, 27, 32, 38, 44, 51,

and 60ms in randomized order. The images were first reconstructed by
inverse Fourier transform using the full data set. A gold-standard T2

map was created from these images by mono-exponential fitting. Then,
a second T2 map was created with the SLIM-BLAST procedure as
described above, using 100% data of the 24ms TE image (128 phase
encodes) and only 25% data of the 60ms TE image (32 phase encodes,
from k-space position –8 to 23). The two T2 maps were compared for
consistency.

Results & Discussion
Typical results are shown in the figure. The top shows the gold-

standard T2 map derived from Fourier reconstruction using data from 7
images. The bottom shows the T2 map derived from SLIM-BLAST
reconstruction using reduced data acquisition. There was a slight loss
in resolution for the SLIM-BLAST reconstruction, but the overall
features were well preserved. Some spurious black and white specks
were visible in both T2 maps, and they were caused by flow artifacts
and slight subject motion during acquisition. Excluding these spurious
pixels and low-intensity pixels (i.e. background and bone), the mean
and median absolute difference in T2 values between the Fourier and
SLIM-BLAST reconstructions were less than 4ms and 3ms,
respectively, in all 5 subjects.

SLIM-BLAST is a general method for improving the time efficiency
of image acquisition. It is a data-consistent method, so its
reconstruction is guaranteed to approach the Fourier reconstruction as
the number of phase encodes increases. SLIM-BLAST can be
combined with fast acquisition pulse sequences to further improve T2

mapping speed. This capability may prove important for studying the
rapid dynamics of T2 changes, such as in muscles during exercise (8).
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