Optimization of B-Value and Gradient Orientation for Diffusion Tensor MRI

A.H. Poonawalla, C. Karmonik, X.J. Zhou

Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA

Introduction

Diffusion-Tensor MRI is a powerful tool for mapping fiber tracts in the human brain [1]. In this technique, contrast between fiber tracts and surrounding tissues arises from diffusion anisotropy, calculated from a set of diffusion-weighted images acquired with different b-values and diffusion-gradient orientations. An optimal combination of these parameters is desired for a given acquisition time to maximize image quality. In this study, we systematically investigated different b-values and number of gradient orientations (N) on normal human volunteers. Image quality was quantitatively analyzed in terms of contrast ratio (CR) and contrast-to-noise ratio (CNR) between major tracts and surrounding tissue.

Methods

To implement the study, a diffusion-tensor pulse sequence was developed based on a prototype provided by GE Medical Systems (Milwaukee, Wisconsin). This sequence is a variation of a single-shot EPI sequence in which multiple diffusion-gradient orientations can be used in a single acquisition. Raw diffusion-weighted images were acquired from human subjects on a 1.5 T GE Signa NV/i scanner. The acquisition parameters were TE = minimum, TR = 4 sec, matrix = 128^2 , FOV = 24 cm, and slice thickness = 5 mm, with varying b-values and multiple N as discussed below. The diffusion images were processed with GE's FuncTool Analysis package, using singular-value decomposition to calculate the diffusion tensor elements and generate the diffusion anisotropy maps.

The lowest N used in this study was 6, the minimum needed to determine the diffusion tensor elements [2]. Eight signal averages (8 NEX) were required to achieve sufficient signal-to-noise ratio for evaluation, leading to a total scan time of ~4 minutes (including acquisition of a base image with b = 0). Data sets with larger N were acquired for comparison, with correspondingly decreased number of averages, chosen to keep acquisition time constant at 4 minutes. An iterative algorithm was used to calculate the orientations, (θ, ϕ) weighted equally by solid angle. A representative set (N = 28) is shown in Fig. 1.

Figure 1: Gradient Orientations for N = 28.

The b-value was varied from 500 to 3000 s/mm² in 250 s/mm² increments for N = 6 (8 NEX) and 55 (1 NEX). For N = 9, 14, and 28, a smaller range of b-values (1250 to 1750 s/mm²) was selected with the corresponding averages (6, 4, and 2 NEX, respectively) chosen to normalize the acquisition times.

CR and CNR were computed for several regions of interest: splenium, left/right internal capsule, and left/right arcuate fasciculus. Grav matter without tracts in the frontal lobe was used as a contrast reference.

Results and Discussion

The relationship between CNR and b-value at two different N (6 and 55) are summarized in Figure 2, with a polynomial fit to illustrate the trend. The experimental data suggest that increasing N lowers the optimal b-value required for maximum CNR. For N = 6 (8 NEX), the peak occurred at ~2500 s/mm², whereas for N = 55 (1 NEX) the optimum was between 750 and 1250 s/mm². Lower optimal b-values at higher N make high-quality diffusion-tensor images possible with reduced distortion [3].

The dependence of maximum CNR on N is given in Figure 3. The results broadly suggest that CNR is higher at larger N. This implies that increasing N is more effective than signal averaging at reducing noise and preserving contrast. Two relative diffusion anisotropy images are compared in Fig. 4.

Figure 2: Maximum Observed CNR vs. b-value for N = 6 and N = 55.

Figure 3: Observed CNR vs. Number of Gradient Orientations.

Figure 4: Comparison of Diffusion-Tensor Images. Left image: N=6. NEX=8, b=2500 s/mm². Right image: N=55, NEX=1, b=1000 s/mm². Conclusions

Initial analysis of our data suggests that a larger number of gradient orientations have an advantage over signal averaging. Continued investigation is under way to construct a viable theoretical model.

References

- Pierpaoli et al., Radiology 201:637-648 (1996). 1.
- 2
- Basser et al., *Magn. Reson. Med.* 39:928-34 (1998). Zhou et al., *Proc.* 5th Int'l. Soc. Magn. Reson. Med., pg.1722 (1997). 3.