Diffusion of Hyperpolarized 129Xe in Biological Systems: Effects of Chemical Exchange

Jan Wolber, Davide Santoro, Martin O. Leach and Angelo Bifone*

CRC Clinical Magnetic Resonance Research Group, The Institute of Cancer Research,
The Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK

Introduction:
Xenon self-diffusion in biological systems may be a suitable NMR parameter for the characterization of different tissues by means of hyperpolarized 129Xe NMR. Chemical exchange between different compartments results in an effective diffusion coefficient D. Here, we present the first measurements of 129Xe diffusion in albumin solution and plasma. The results are analyzed using a straightforward extension of the random-jump model of diffusion in the presence of chemical exchange.

Materials and Methods:
Optical cells were filled with a suitable mixture of enriched 129Xe, N$_2$ and He and a small amount of Rb. The Rb vapour was optically pumped with circularly polarized light from a 120 W diode laser array.

We chose a 5% w/v solution of bovine serum albumin (BSA) in de-ionized H$_2$O, and plasma from human blood, as model systems in which xenon undergoes fast chemical exchange between the aqueous and protein-bound environments. All hyperpolarized 129Xe diffusion measurements were performed at a field of 1.5T using a pulsed-gradient spin-echo NMR sequence. This technique requires multiple experiments to determine the diffusion coefficient. Single-shot diffusion measurements using a Burst technique have been demonstrated to yield good results for xenon dissolved in various liquids [2]. However, the Burst echo train could not be refocused in the presence of chemical exchange.

Theory:
Translational diffusion of atoms or small molecules can be pictured as a succession of discrete random jumps with a small displacement ζ with a mean time τ_s between successive steps [1]. The attenuation of the NMR signal of spins that are subject to diffusion is given by the coefficient [1]

$$\exp(i\Delta \Phi) = \exp(-\frac{1}{3}\gamma^2 G^2 D t^3), \quad (1)$$

where γ is the gyromagnetic ratio and G the applied field gradient. Extending this model for two environments A and B characterized by diffusion coefficients $D_{A,B} = \frac{1}{3}G^2/2\tau_s$ and allowing for exchange between compartments A and B, the NMR signal is then attenuated by

$$\exp(i\Delta \Phi) = \exp(-\frac{1}{3}\gamma^2 G^2 (p_A\sqrt{D_A} + p_B\sqrt{D_B})^3 t^3) \quad (2)$$

with $p_{A,B}$ being the fractions of atoms in compartments A and B. In the limit of fast chemical exchange, the signal decay follows eq. 2, and the apparent diffusion coefficient \tilde{D} is a weighted average of the diffusion in the two compartments:

$$\tilde{D} = (p_A\sqrt{D_A} + p_B\sqrt{D_B})^3. \quad (3)$$

Results:
The diffusion coefficient of xenon in 5% BSA solution was measured to be $1.45 \times 10^{-9} m^2 s^{-1}$, compared to $D = 1.68 \times 10^{-9} m^2 s^{-1}$ for xenon in de-ionized H$_2$O. The errors in the measurements of D are < 5%. As a first approximation, we can assume that the contribution to \tilde{D} of the xenon fraction bound to BSA is negligible. Therefore, eq. 3 can be used (with $D_B \approx 0$) to obtain the fractions of xenon in the aqueous phase and bound to the protein, respectively. The result $p_A = 0.93$ and $p_B = 0.07$ are in good agreement with solubility data [3], which yield fractions of $p_A = 0.96$ and $p_B = 0.04$, respectively.

In the case of plasma, the xenon diffusion coefficient is further reduced by the presence of ions [4] and other proteins. We measured a xenon diffusion coefficient of xenon in plasma of $1.0 \times 10^{-9} m^2 s^{-1}$. We also found that the xenon diffusion coefficient in a 0.9% w/v NaCl solution is $1.34 \times 10^{-9} m^2 s^{-1}$, about 20% smaller than the diffusion coefficient of xenon in de-ionized H$_2$O. Applying eq. 3 yields fractions of $p_A = 0.86$ and $p_B = 0.14$ for the dissolved and bound compartments. These results again compare favorably with the fractions $p_A = 0.87$ and $p_B = 0.13$ calculated from solubility data [3].

Conclusion:
We have extended the random-jump model to describe translational diffusion in the presence of chemical exchange. We have successfully applied this model to hyperpolarized 129Xe diffusion measurements. Both proteins and ions decrease xenon self-diffusion in solution. Typical diffusion coefficients of xenon in protein solution and plasma are on the order of $10^{-9} m^2 s^{-1}$. This is an important parameter for the understanding of in vivo hyperpolarized 129Xe dynamics in blood and tissues.

(*) Email: bifone@icr.ac.uk

REFERENCES: