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Introduction 
Resting state tMRI time-series data from functionally connected regions of 

the brain has been shown to exhibit a high degree of temporal coherence of 
low-mquency fluctuations (5 O.lHz). These synchronous fluctuations occur 
spontaneously by changes of local blood flow. In the past, researchers were able 
to confirm synchronous fluctuations of several structures of the motor system, 
auditory system, and visual system. The method to obtain functionally 
connected regions has been based on a temporal correlation analysis (after low- 
pass filtering) of pixels (L(sd pixels) in a small region of eloquent cortex with 
all other pixels of the brain.‘” 

In this report we applied independent component analysis (ICA) to obtain 
spatially independent patterns in resting state tMRI time-series data as an 
alternative to correlation maps for tunctional connectivity analysis. ICA is a 
powerful method for the analysis of tMRI data, because it does not make 
assumptions about the signal intensity as a function of time or space. In 
activation tMRl studies, it has recently been shown that ICA can extract both 
transient and consistently task-related, as well as physiologically-relevant non- 
task-related, and various artifactual components (gross motion) of the observed 
tMFtl signals‘? In the near fnmre, we intend to apply functional connectivity 
analysis to patients with psychiatric disorders. 

Theorv 
ICA assumes that the time-series data are related by a linear transformation to 

spatially independent components (sources), according to 

where SP, is the i-th source of pixel p, xtp is the tMRI signal intensity of pixel p at 
time t where the mean signal intensity (over p) has been subtracted, and W, is the 
linear transf~ation (weighting matrix). The weighting matrix is square and of 
111 rank The average time course of the i-th source is given by the inverse of W, 
i.e. Wh-‘. The sources Si are statistically independent of each other and thus have 
vanishing pairwise moments (between component i and i’) up to all orders n, i.e. 

c sl;s,tp = 0 for all n=1,2,3 ,..., oo, and all components i,i’. 
P 

Independent component analysis (or blind source separation) as formulated by 
Cornon attempts to estimate W and S horn X by minimi&g the mutual 
information in S. Bell and Sejnowski’ have proposed a neural network algorithm 
to obtain the ICA components. 

Methods 
This research was nerformed on a 1.5T GE Horizon MRI scanner (Waukesha, 

WI) with high-speed gradients to allow EPI BOLD contrast acquisition. The 
EPI scanning protocol consisted of the pammeters: Flip 90 deg, TE 5Oms, TR 
2OOOms, FOV 24cm x 24cm, slice thickness 7mrn, gap 2mm, 18 slices (whole 
brain coverage), 64 x 64 imaging matrix, 125kHz receiver bandwidth. Five 
healthy volunteers were studied in both resting and task-activation states. 

For the resting state studies a series of 260 images were acquired in the 
coronal plane during which time the volunteers were instructed to rehain from 
any cognitive, sensory or motor activity and to keep their eyes closed. In order 
to identify normal functional activation patterns of motor, visual and auditory 
cortex, regular task activation studies were done such as bilateral finger tapping, 
passive listening to narrated text, verb generation, and looking at a strobe light 
of 8Hz tbequency. 

The scan protocol for the activation studies consisted of four on-off cycles, 
each cycle 64 seq 148 images total, all other parameters were the same as for 
the resting state scans. The task-activation data were analyzed by cross 
correlation to a boxcar function and by ICA. Patterns of activity were identified 
for the motor, language, auditory and visual systems. Seed pixels in the 
Rolandic cortex, dentate nucleus of the cerebellum, primary auditory cortex, 
striate cortex, hippocampus, and Broca’s area were selected in the resting state 
studies. 

To reduce the number of noisy or irrelevant pixels, the pixel locations 
belonging to CSF and major arteries and veins were determined. CSF appears 
to be very bright on the tirst non-saturated EPI image and can be thresholded 
out. Furthermore, the location of major pulsations Tom larger blood vessels can 
be obtained from a SNR map and suppressed by thresholding. Furthermore, 
temporal smoothing using a 3 point Harming filter was performed. Since each 
slice was collected at a different time during TR, all signal intensities of each 
slice were timecorrected by shifting the smoothing filter accordingly. Then, a 
low pass filter in the frequency domain was applied to the remaining pixel time 
courses to effectively remove frequencies higher than 0. 1Hz. We found, that the 
aliased cardiac tmqrency, occurring in the low thzquency domain, has a small 
amplitude for pixels in gray matter. Removing this Iiequency by a band-reject 

filter does not improve the connoztivity maps significantly. The correlation 
coefficients are calculated for the resting-state fluctuations between selected 
seed pixels in a functional region of interest and all other gray and white matter 
pixels in the brain, and correlation maps were prepared showing the location of 
all pixels with a correlation threshold exceeding 0.3. 

A Blind Source Separation algorithm was applied using the extended ICA 
method of Bell and Sejnowski to all resting-state data in gray and white matter 
only. The resulting matrix size of the data was on the order of 256*8000. The 
ICA components were converted to a z-score and all components were ranked 
according to their cumulative z-score content above the threshold 1z/=4. 

Results and Discussion 
Figure 1 shows the results of four different methods of data analysis. We 

applied a conventional t-statistic to task-activated data sets for three different 
experiments leading to activation in the visual cortex, auditory cortex and 
Broca’s area The same data sets were reanalyzed with ICA. Then, using a 
resting state acquisition, we applied ICA on the resting-state data as well as 
fbnctional corm&iv&y analysis via cross correlation of selected seed pixels. If 
the seed pixels in the cross correlation calculation are chosen caretblly, we found 
that flmetional connectivity analysis in the resting state and ICA in the resting 
state cm pnxluce very similar patterns for visual cortex, auditory cortex, and 
Broca’s area We have only seen a few instances, where ICA maps are different. 
For example, cross correlation analysis of pixels Iborn the primary motor cortex 
predicts a small but present functional connectivity to nuclei in the cerebellum, 
but ICA in the resting data split up these two hrnctionally connected areas into 
two separate components. 

Maps from resting state data as compared to activation-state data differ in 
general when compared across several slices, since more functional areas are 
involved for task execution. 

Figure 1. Activity patterns in the visual cortex (top row), primary auditory cortex 
(middle row), and Broca’s area (bottom row) analyzed by a conventional t- 
statistic in a task-activation state (1. column), ICA in a task-activated state (2. 
cohnnn), ICA using resting state data (3. column), and functional connectivity in 
the resting state (4. column). 

Conclusion 
Functionally related brain regions can be identified by means of their 

synchronous slow fluctuations in blood flow in motor cortex, SMA, expressive 
and receptive language regions, and limbic regions. Such blood flow synchrony 
can be detected also by using ICA in resting state acquisitions. For some cases 
however, due to sensitivity of ICA to super-Gaussian distributions, functional 
connectivity patterns as calculated by cross correlation methods can split into 
further ICA components. 
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