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Purpose divergence (converging or diverging fiber pattern), (b)
non-zero curl (circulating, open or closed fiber pattern),
or (c) periodic or uniform fiber directional pattern. Fig 1
shows a fiber tract trajectory, r(s), calculated from such a
test map in which all three Euler angles of D(x): φ (x),
ϕ(x), and θ(x), varied continuously through the image
volume.

  To propose a methodology to calculate continuous
fiber-tract trajectories from measured diffusion tensor
MRI data, and a rationale for determining fiber tract
continuity.

Introduction
  In normal and pathological tissues, fiber tract
trajectories would provide valuable new microstructural
information. In aging and development it would provide
a means to follow changes in fiber-architecture. DT-MRI
(1) is now the first noninvasive imaging modality
capable of generating such fiber-tract trajectories. This is
because in each voxel, the fiber tract direction is parallel
to the eigenvector, ε 1, associated with the largest
eigenvalue, λ1, of the local diffusion tensor, D (1).
However, ε 1 measured by DT-MRI are inherently
discrete, noisy, voxel-averaged estimates of the “true”
direction vectors (2). To date, it has not been feasible to
reconstruct continuous fiber tract trajectories from the
measured ε 1. However, a new, efficient D-field processing
methodology that we just developed, generates a
continuous diffusion tensor field, D(x), from measured
DT-MRI data (3) from which a continuous ε1-field map
can be calculated. Then, the method below can be used to
calculate fiber tract trajectories, and assess fiber tract
continuity.

Fig 1. Computed 3-d fiber tract trajectory from synthetic D(x)
image.

  Predictably, however, we were unable to follow the
fiber-tract trajectory through singularities (sources or
sinks) in the fiber direction field. Closed and open fiber
paths could be followed reliably, though, provided that
the step size was small compared to the local radii of
curvature.

Theory Discussion and Concluding Remarks
  The fiber tract trajectory vector, r(s), is parameterized
by arc length, s. We solve the linear forced vector
differential equation on the left below for r(s) (4):

 Two paradigmatic problems arise in this emerging field
of DT-MRI Fiber Tractography in trying to assess fiber-
tract continuity or functional connectivity.  One is an
initial value problem--to follow a fiber trajectory starting
from one point on it. Another is a two-point boundary
value problem--to establish whether two points (or
regions) are connected by a single fiber-tract (or set of
fiber tracts).  Note, if these regions are connected by
fiber tracts that cross, branch, merge or fan out, causing
“powder averaging” of the D-field at these points (6),
then without additional a priori or a posteriori
information about the distribution of fiber tract
directions within these voxels, tracing fibers through
them is problematic. In functional PET and MRI studies,
“activity” is often reported simultaneously in different
brain regions following stimulation. Here, it is naive to
imagine that DT-MRI alone can provide an anatomical
basis for simultaneous activation by establishing
connections between these regions via gross neural
pathways. Nevertheless, using the new methodology
presented here, determining fiber trajectories in large
coherently oriented white matter tracts, such as the
spinal cord, corpus callosum, and pyramidal tracts, as
well as in other ordered soft tissues, is now feasible.

dr(s)

ds
= t(s); t(s) = ε1(r(s))

The key new idea presented on the right above is to
equate the normalized eigenvector of D(r(s)), ε 1(r(s)),
(associated with the largest eigenvalue of D(r(s)),
λ1(r(s)), and the unit vector, t(s), tangent to the fiber
tract trajectory vector, r(s).

Methods
 Numerical methods must be used to obtain r(s) from
D(x). Starting at a point x0 on r(s), we evaluate D(x0),
calculate ε 1(x0) (which is parallel to the slope of r(s) at
x0), and approximate the position of a nearby point on
r(s), x1, using a Taylor series expansion of x about x0: x1

= x0 + δx ... Since the correction, δx is parallel to the
fiber tract direction at x0, δx =α ε1(x0), where α is a
(small) constant. These steps are repeated for a new
point, x1; the process is then iterated. This is Euler’s
method. While easy to implement, there is no way to
correct its prediction of r(s), leading to accumulated
errors (5). However, using our continuous representation
of D(x), we can now calculate second and higher
derivatives of ε 1(x) at any point, and thus improve
accuracy by employing higher order correction schemes,
e.g., Runge-Kutta methods (5).
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