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It is natural to think of rigid body motion correction between similar images (2D) or image 
volumes (3D) as a task performed in the image domain. To find the amount of motion in units of 
voxels (or mm) and degrees, the image to be registered (i.e. corrected) is compared against some 
reference image (often the first one in the time series). The best estimate (guess) of the motion that 
has occurred corresponds to the set of translations and rotations that give the lowest sum-of-
squares difference (or some other metric) between the reference image (Iref) and the image to be 
registered (Imoved): 
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where    x2D = Tx ,Ty ,Rz

⎡⎣ ⎤⎦  for the 2D case (two translations and one rotation in the 2D plane) and 

   x3D = Tx ,Ty ,Tz ,Rx ,Ry ,Rz
⎡⎣ ⎤⎦   (full rigid body motion: 3 translations and 3 rotations) for the 3D (image 

volume) case.  
 
We need to use some search algorithm (engine) that iteratively tries different values for x until the 
images look as similar as possible. For the 2D case, x contains three parameters, and the search 
space will therefore be a 3-dimensional parameter space, in which we want to find the best 
solution. For 3D motion correction, this search space becomes instead 6-dimensional. 
 
The estimation of these motion parameters - and the correction of the data using these motion 
parameters - may also be performed in k-space. In some situations, performing motion estimation 
in k-space is the only choice, such as when a navigator is added to a pulse sequence for the 
purpose of motion detection, but where the navigator data does not cover enough of k-space to 
allow for a Fourier transformation to an image that could be used in Eq. [1]. Examples of such 
navigators include e.g. the cloverleaf (1), orbital (2), and spherical (3) navigators. For PROPELLER 
data, motion correction has been performed both in k-space (4) and in the image domain (5). 
 
To understand how motion detection and correction can be performed in k-space, we first need to 
understand the Fourier shift theorem. This theorem states that a shift of data in one domain (for 
motion we have these shifts, or translations, in the image domain) corresponds to an added linear 
phase ramp in the Fourier transformed domain (i.e. here in k-space). This is illustrated in Fig. 1 
below. A shift (translation) of the image data of e.g. 1 pixel to the right in the horizontal direction 
corresponds to an added phase ramp in k-space of −π →π , i.e. where the left-most column of k-
space has a phase change of −π  (or -180 deg.) and the right-most column of k-space has a phase 
change of +π  (or +180 deg.). For a translation in the image domain of e.g. 4 pixels vertically and -3 
pixels horizontally, the corresponding k-space will first have a vertical phase ramp added of 

  
−4π

top row
! → 4π

bottom row
! , but also a horizontal phase ramp of 

  
3π

leftmost column
! → −3π

rightmost column
! added to it, summing 

up to a combined phase ramp along a near-diagonal direction in k-space. Hence, from the k-space 
data we will use for motion detection (estimation), we need to be able to determine this slope and 
direction of the motion induced phase ramp. See the Matlab example at the end of this document. 
 
A rotational motion is the same in k-space and the image domain, i.e. if we detect α  degrees of 
rotational motion in k-space, it will be the same in the image domain. Using something else than 
square image pixels and square image FOV (corresponds to square pixels in k-space), one have to 
keep the voxel size in mind when rotating. 
 



Searching for the optimal x in k-space can be done in two stages, unlike when estimating the 
motion in the image domain (where all 3 (2D) or 6 (3D) parameters need to be estimated together). 
By taking the magnitude of k-space, all phase is removed from the k-space data and hence also 
phase ramps (all translation effects in the image domain). Hence, on a magnitude (2D) k-space, we 
only estimate one rotation parameter, i.e. we are performing a 1-dimensional search for the best 
rotation. Once this rotation is found, the translation parameters can be estimated using the 
complex rotation corrected k-space. This technique is well described in (4,6). Moreover, Refs (7,8) 
explains how rotations can be made by using successive shear operations. 
 
 
 
 
 
 

Image translation demonstration using Matlab (or Octave) 
 

 
 
res = 128; 
I = phantom(res); % create a Shepp-Logan phantom image of size res x res in variable 'I' 
  
close all; % close all figures (if any) 
  
k = fftshift(fft2(fftshift(I))); % Fourier transform of the original image to k-space 
  
for shift_x = -5:5:5 
   % shifts (translations) from -5 to +5 pixels (in steps of 5) 
   % in the horizontal direction 
    
   for shift_y = -5:5:5 
      % shifts from -5 to +5 pixels (in steps of 5) 
      % in the vertical direction 
       
      % shift the image in the image domain. 'circshift' only supports integer shifts 
      Ish = circshift(I, [shift_y shift_x]); 
       
      % create a horizontal 1D ramp of values between: 
      % -shift_x*pi (-shift_x*180deg) --> +shift_x*pi (+shift_x*180deg) 
      phaseramp_onerow = linspace(-pi, +pi, size(k,2))  * shift_x; 
       
      % create a vertical 1D ramp of values 
      % between -shift_y*pi to +shift_y*pi 
      % Note the "'" sign making this a column vector 
      phaseramp_onecol = linspace(-pi, +pi,  size(k,1))' * shift_y; 
       
      % create the combined phaseramp in k-space 
      % - first term is a copy of the 1D row ramp to all rows 
      % - second term is a copy of the 1D column ramp to all columns 
      phaseramp2D = repmat(phaseramp_onerow, [size(k,1) 1]) + ... 
         repmat(phaseramp_onecol, [1 size(k,2)]); 
       
      % add this phaseramp to the original kspace 
      k_withphaseramp = k .* exp(-i * phaseramp2D); 
       
      % Fourier transformt the new kspace to the image domain 
      Ish_doneinkspace = abs(ifftshift(ifft2(ifftshift(k_withphaseramp)))); 
       
       
      % show the data for each shift combination 
      figure(1); colormap gray 
      subplot(121); 
      imagesc(phaseramp2D,10*pi*[-1 1]); 
      axis image; title('phase ramp. Values in radians'); colorbar; drawnow 
       
      subplot(122); 
      imagesc([I  zeros(size(I)); Ish (Ish-I); Ish_doneinkspace (Ish_doneinkspace-I)],[-1 1]); 
      axis image; 
      if exist('truesize','file') 
         truesize; % one pixel in the image = one pixel on the screen 



      end 
      ylabel('shift via kspace    -    shift in image domain    -    original') 
      xlabel('image      -     difference to orig'); 
      title(sprintf('shift y: %g   shift x: %g\n[press SPACE BAR for next]',shift_y, shift_x)); 
       
      % wait for key press. 
      % In Octave you need to click on the Command Window, then SpaceBar, each time 
      pause; 
   end 
end 
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phase ramp. Values in radians
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