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It is natural to think of rigid body motion correction between similar images (2D) or image
volumes (3D) as a task performed in the image domain. To find the amount of motion in units of
voxels (or mm) and degrees, the image to be registered (i.e. corrected) is compared against some
reference image (often the first one in the time series). The best estimate (guess) of the motion that
has occurred corresponds to the set of translations and rotations that give the lowest sum-of-
squares difference (or some other metric) between the reference image () and the image to be
registered (I,,,p0):
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where x,, =[Tx,Ty,RZ] for the 2D case (two translations and one rotation in the 2D plane) and

X, = [Tx,Ty,E,Rx,Ry,RZJ (full rigid body motion: 3 translations and 3 rotations) for the 3D (image

volume) case.

We need to use some search algorithm (engine) that iteratively tries different values for x until the
images look as similar as possible. For the 2D case, x contains three parameters, and the search
space will therefore be a 3-dimensional parameter space, in which we want to find the best
solution. For 3D motion correction, this search space becomes instead 6-dimensional.

The estimation of these motion parameters - and the correction of the data using these motion
parameters - may also be performed in k-space. In some situations, performing motion estimation
in k-space is the only choice, such as when a navigator is added to a pulse sequence for the
purpose of motion detection, but where the navigator data does not cover enough of k-space to
allow for a Fourier transformation to an image that could be used in Eq. [1]. Examples of such
navigators include e.g. the cloverleaf (1), orbital (2), and spherical (3) navigators. For PROPELLER
data, motion correction has been performed both in k-space (4) and in the image domain (5).

To understand how motion detection and correction can be performed in k-space, we first need to
understand the Fourier shift theorem. This theorem states that a shift of data in one domain (for
motion we have these shifts, or translations, in the image domain) corresponds to an added linear
phase ramp in the Fourier transformed domain (i.e. here in k-space). This is illustrated in Fig. 1
below. A shift (translation) of the image data of e.g. 1 pixel to the right in the horizontal direction
corresponds to an added phase ramp in k-space of - — 7, i.e. where the left-most column of k-
space has a phase change of —7 (or -180 deg.) and the right-most column of k-space has a phase
change of +7 (or +180 deg.). For a translation in the image domain of e.g. 4 pixels vertically and -3
pixels horizontally, the corresponding k-space will first have a vertical phase ramp added of
—4m — 4z , but also a horizontal phase ramp of 37 — -3z  added to it, summing
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up to a combined phase ramp along a near-diagonal direction in k-space. Hence, from the k-space
data we will use for motion detection (estimation), we need to be able to determine this slope and
direction of the motion induced phase ramp. See the Matlab example at the end of this document.

A rotational motion is the same in k-space and the image domain, i.e. if we detect & degrees of
rotational motion in k-space, it will be the same in the image domain. Using something else than
square image pixels and square image FOV (corresponds to square pixels in k-space), one have to
keep the voxel size in mind when rotating.



Searching for the optimal x in k-space can be done in two stages, unlike when estimating the
motion in the image domain (where all 3 (2D) or 6 (3D) parameters need to be estimated together).
By taking the magnitude of k-space, all phase is removed from the k-space data and hence also
phase ramps (all translation effects in the image domain). Hence, on a magnitude (2D) k-space, we
only estimate one rotation parameter, i.e. we are performing a 1-dimensional search for the best
rotation. Once this rotation is found, the translation parameters can be estimated using the
complex rotation corrected k-space. This technique is well described in (4,6). Moreover, Refs (7,8)
explains how rotations can be made by using successive shear operations.

Image translation demonstration using Matlab (or Octave)

res = 128;
I = phantom(res); % create a Shepp-Logan phantom image of size res x res in variable 'TI’

close all; % close all figures (if any)
k = fftshift(£fft2(fftshift(I))); % Fourier transform of the original image to k-space

for shift x = -5:5:5
shifts (translations) from -5 to +5 pixels (in steps of 5)

%
% in the horizontal direction

for shift y = -5:5:5
shifts from -5 to +5 pixels (in steps of 5)

%
% in the vertical direction

% shift the image in the image domain. 'circshift' only supports integer shifts
Ish = circshift(I, [shift_y shift x]);

create a horizontal 1D ramp of values between:
-shift x*pi (-shift x*180deg) --> +shift x*pi (+shift x*180deg)
phaseramp _onerow = linspace(-pi, +pi, size(k,2)) * shift x;

%
%

% create a vertical 1D ramp of values

% between -shift y*pi to +shift y*pi

% Note the "'" sign making this a column vector

phaseramp onecol = linspace(-pi, +pi, size(k,1))' * shift y;

% create the combined phaseramp in k-space
% - first term is a copy of the 1D row ramp to all rows
% - second term is a copy of the 1D column ramp to all columns
phaseramp2D = repmat(phaseramp onerow, [size(k,1) 1]) +
repmat (phaseramp _onecol, [l size(k,2)]);

% add this phaseramp to the original kspace
k_withphaseramp = k .* exp(-i * phaseramp2D);

% Fourier transformt the new kspace to the image domain
Ish_doneinkspace = abs(ifftshift(ifft2(ifftshift(k_withphaseramp))));

% show the data for each shift combination

figure(l); colormap gray

subplot(121);

imagesc(phaseramp2D, 10*pi*[-1 1]);

axis image; title( 'phase ramp. Values in radians'); colorbar; drawnow

subplot(122);
imagesc([I zeros(size(I)); Ish (Ish-I); Ish doneinkspace (Ish_doneinkspace-I)],[-1 1]);
axis image;
if exist('truesize','file')
truesize; % one pixel in the image = one pixel on the screen



end

ylabel('shift via kspace - shift in image domain - original')

xlabel('image - difference to orig');

title(sprintf('shift y: %g shift x: %g\n[press SPACE BAR for next]',shift y, shift x));

% wait for key press.
% In Octave you need to click on the Command Window, then SpaceBar, each time

pause;
end
end
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