Hyperpolarized gas pulmonary MRI provides physiologically relevant biomarkers of obstructive lung disease including emphysema, bronchopulmonary dysplasia, congenital lobar emphysema and alpha-1 antitrypsin deficiency. Recently, a stretched-exponential-model combined with under-sampling in the imaging and diffusion direction was used for the generation of 3He static-ventilation, T2* and multiple b-value diffusion-weighted MRI-based ADC/morphometry maps. We hypothesize that the 3He method can be modified to provide whole lung 129Xe MRI-based emphysema biomarkers including static-ventilation, T2*/ADC/morphometry maps with high-spatial-image-resolution in a single breath-hold. Therefore, in this proof-of-concept evaluation, our objective was to demonstrate a feasibility of this approach in a small group of patients.
A. Ouriadov was funded in part by a fellowship from the Alpha-1 Foundation (USA).
Authors thank Abascal, et all for providing Matlab code for the image reconstraction.
1 Mugler, J. P., 3rd & Altes, T. A. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 37, 313-331, doi:10.1002/jmri.23844 (2013).
2 Driehuys, B. et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 262, 279-289, doi:10.1148/radiol.11102172 (2012).
3 Kirby, M. et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265, 600-610, doi:10.1148/radiol.12120485 (2012). 4 Kaushik, S. S. et al. Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med 65, 1154-1165, doi:10.1002/mrm.22697 (2011).
5 Kirby, M. et al. Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: physiological relevance in older never- and ex-smokers. Physiol Rep 2, doi:10.14814/phy2.12068 (2014).
6 Chan, H. F., Stewart, N. J., Parra-Robles, J., Collier, G. J. & Wild, J. M. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing. Magn Reson Med 77, 1916-1925, doi:10.1002/mrm.26279 (2017).
7 Abascal, J. F. P. J., Desco, M. & Parra-Robles, J. Incorporation of prior knowledge of the signal behavior into the reconstruction to accelerate the acquisition of MR diffusion data. ArXiv e-prints 1702 (2017). <http://adsabs.harvard.edu/abs/2017arXiv170202743A>.
8 Westcott, A., Guo, F., Parraga, G. & Ouriadov, A. Rapid Single-breath Hyperpolarized Noble Gas MRI Based Biomarkers of Airspace Enlargement. J Magn Reson Imaging, doi:10.1002/jmri.26574 (2018).
9 Parra-Robles, J., Dominguez Viqueira, W., Xu, X., Ouriadov, A. & Santyr, G. E. Theoretical prediction and experimental measurement of the field dependence of the apparent transverse relaxation of hyperpolarized noble gases in lungs. J Magn Reson 192, 85-91, doi:10.1016/j.jmr.2008.02.009 (2008).
10 Xu, X. et al. Hyperpolarized 129Xe gas lung MRI-SNR and T2* comparisons at 1.5 T and 3 T. Magn Reson Med 68, 1900-1904, doi:10.1002/mrm.24190 (2012).
11 Kaushik, S. S. et al. Single-breath clinical imaging of hyperpolarized (129)Xe in the airspaces, barrier, and red blood cells using an interleaved 3D radial 1-point Dixon acquisition. Magn Reson Med 75, 1434-1443, doi:10.1002/mrm.25675 (2016).
12 Chan, H. F., Stewart, N. J., Norquay, G., Collier, G. J. & Wild, J. M. 3D diffusion-weighted (129) Xe MRI for whole lung morphometry. Magn Reson Med 79, 2986-2995, doi:10.1002/mrm.26960 (2018). 13 Ouriadov, A., Lessard, E., Sheikh, K., Parraga, G. & Canadian Respiratory Research, N. Pulmonary MRI morphometry modeling of airspace enlargement in chronic obstructive pulmonary disease and alpha-1 antitrypsin deficiency. Magn Reson Med 79, 439-448, doi:10.1002/mrm.26642 (2018).
14 Yablonskiy, D. A. et al. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J Appl Physiol (1985) 107, 1258-1265, doi:10.1152/japplphysiol.00386.2009 (2009).
15 Sukstanskii, A. L. & Yablonskiy, D. A. Lung morphometry with hyperpolarized 129Xe: theoretical background. Magn Reson Med 67, 856-866, doi:10.1002/mrm.23056 (2012).
16 Ouriadov, A. et al. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects. Magn Reson Med 74, 1726-1732, doi:10.1002/mrm.25550 (2015).
Figure 1. 129Xe MRI Pulse Sequence Schematic, Sparsity Pattern for AF=7 and 10
A) Diffusion-Weighted, Multi-Slice 2D Fast-Gradient-Recall-Echo (FGRE) pulse sequence with diffusion-sensitizing along z-direction. Δ=5.2ms, TE=10ms. Five interleaves, starting at the maximum b-value (45.5s/cm2) ensures multiple b-value approach; B) An extra interleave with no diffusion-weighting (b=0) and significantly reduced TE (2ms) utilized to generate a short TE static-ventilation-image and T2* map by using a long TE static ventilation image (b=0) from A); C) k-space under-sampling scheme, ensuring a variety of sparsity patterns for each b-value (AF=7 top panel and AF=10 bottom panel) employed in diffusion direction.
Figure 2. Representative 129Xe MRI maps obtained for the healthy volunteers with and without acceleration. T2*= free induction decay time constant; ADC = apparent diffusion coefficient; LmD = specific to acinar duct mean diffusion length; Lm = mean linear intercept estimate; HV = young healthy volunteer; Aindicates under-sampling with the acceleration factor of 7.
HV-1: ADC/ADCA = .04cm2s-1/.03cm2s-1, LmD/LmDA=200µm/190µm, Lm/LmA=220µm/210µm, T2*/AT2*=12ms/12ms.
HV-2: ADC/ADCA = .03cm2s-1/.03cm2s-1, LmD/LmDA=190µm/190µm, Lm/LmA=210µm/210µm, T2*/AT2*=16ms/14ms.
Figure 3. Representative 129Xe MRI maps obtained for the AATD with and without acceleration. ADC = apparent diffusion coefficient; LmD = specific to acinar duct mean diffusion length; Lm = mean linear intercept estimate; AATD=Alpha-one antitrypsin deficiency; AATD-2 = Ex-smoker AATD; Aindicates under-sampling with the acceleration factor of 7.
AATD -1: FEV1=24.4%pred, DLCO=50%pred, ADC/ADCA=.06cm2s-1/.07cm2s-1, LmD/LmDA=240µm/250µm, Lm/LmA=470µm/540µm.
AATD -2: FEV1=55%pred, DLCO=18%pred, ADC/ADCA = .10cm2s-1/.10cm2s-1, LmD/LmDA=315µm/310µm, Lm/LmA=800µm/780µm.
Figure 4. Representative 129Xe MRI maps obtained for a healthy volunteer with acceleration of 7 and 10. T2*= free induction decay time constant; ADC = apparent diffusion coefficient; LmD = specific to acinar duct mean-diffusion-length; Lm = mean-linear-intercept estimate; HV = young healthy volunteer; AF = Acceleration Factor.
#AF=1: ADC = .04cm2s-1, LmD = 200µm, Lm = 220µm, T2* = 12ms.
AF=7: ADC = .04cm2s-1, LmD = 190µm, Lm = 210µm, T2* = 14ms.
AF=10: ADC = .04cm2s-1, LmD = 200µm, Lm = 210µm, T2* = 14ms.
#indicates acceleration factor of 1 data (Figure 2) shown for a completeness only.