Neurite orientation dispersion and density imaging (NODDI) is a diffusion imaging technique that uses diffusion gradients of different strengths to provide novel metrics of axonal and dendrites integrity. In this study, we explored the value of NODDI metrics - in lesions and normal appearing tissue - to predict the long term disability in relapsing-remitting MS (RRMS) patients. NODDI metrics in NAWM and lesions showed significant correlations with patients disability at 8 years follow-up. Future studies should explore the predictive value of NODDI metrics in MS lesions and in larger cohorts of MS patients.
[1] Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. Sep 28; 343(13):938-52, 2000.
[2] Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 2017; 61(4), 1000–16.
[3] Granberg T, Fan Q, Treaba CA, Ouellette R, Herranz E, Mangeat G, Louapre C, Cohen-Adad J, Klawiter EC, Sloane JA, Mainero C. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain. 2017 Nov 1;140(11):2912-2926. doi: 10.1093/brain/awx247.
[4] By S, Xu J, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. Neuroimage Clin. 2017 May 17;15:333-342.
[5] Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianuş A, Yiannakas MC, Newcombe J, Zhang H, Alexander DC, DeLuca GC, Gandini Wheeler-Kingshott CAM. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol. 2017 Aug 15;4(9):663-679.
[6] St-Jean S et al. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising. Medical Image Analysis, 2016; 32:115 – 130
[7] https://fsl.fmrib.ox.ac.uk/fsl
[8] Daducci A, Canales-Rodríguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran J-P. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. Nueorimage, 2015; 105:32-44 [
9] Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji DE, Rotzinger D, Lin Y-C, Menegaz G, Schluep M, Du Pasquier R, Sumpf TJ, Frahm J, Thiran J-P, Krueger G, Granziera C. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2014; 1(6):423-432
[10] S. Klein, M. Staring, K. Murphy, M.A. Viergever, J.P.W. Pluim. elastix: a toolbox for intensity based medical image registration, 2010 IEEE Transactions on Medical Imaging, 29(1):196 - 205
[11] Roche A, Ribes D, Bach-Cuadra M, Kruger G. On the convergence of EM-like algorithms for image segmentation using Markov random fields. Med Image Anal 2011;15:830–839
[12] Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji DE, Rotzinger D, Lin Y-C, Menegaz G, Schluep M, Du Pasquier R, Sumpf TJ, Frahm J, Thiran J-P, Krueger G, Granziera C. Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis BioMed Research International, 2015.
[13] Bonnier G, Kober T, Schluep M, Du Pasquier R, Krueger G, Meuli R, Granziera C, Roche, A. A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation, Plos One, 2016, 11(2): e0148631
[14] Bonnier G, Maréchal B, Fartaria MJ, Falkowskiy P, Marques JP, Simioni S, Schluep, M, Du Pasquier R, Thiran, J-P, Krueger G, Granziera C. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients. Frontiers in neurology, 2017, 8:506