In this study we aimed to evaluate the magic angle sensitivity of the 3D UTE-Cones-AdiabT1ρ sequence in imaging the cadaveric human Achilles tendon and patellar cartilage samples on a clinical 3T scanner. The 3D UTE-Cones-AdiabT1ρ shows much reduced magic angle effect than regular T1ρ and T2*. The superficial layers show reduced magic angle effect compared to the middle and deep layers of articular cartilage. The 3D UTE-Cones-AdiabT1ρ sequence may provide magic angle insensitive evaluation of all the major knee joint tissues, thus providing a truly “whole-organ” approach for more accurate diagnosis of early OA.
Figure 1 shows representative images from 3D UTE-Cones-AdiabT1ρ imaging, regular UTE-Cones-T1ρ imaging, and UTE-Cones-T2* imaging of the same patellar sample oriented parallel and 55° relative to the B0 field. More dramatic signal decay was observed for the latter two sequences.
Figure 2 shows exponential fitting curves for a global ROI of a patellar sample oriented parallel, 55° and 90° to the B0 field using UTE-Cones-AdiabT1ρ, regular UTE-Cones T1ρ and UTE-Cones-T2* imaging, respectively. Again, AdiabT1ρ values show the smallest magic angle effect.
Figure 3 shows the magic angle behavior of UTE-Cones-AdiabT1ρ for the superficial, middle and deep layers of the patellar sample oriented parallel, 55° and 90° to the B0 field. AdiabT1ρ increases from the deep layer to the superficial layer for all angular orientations.
Figure 4 shows UTE-Cones-AdiabT1ρ profile, regular UTE-Cones-T1ρ profile and UTE-Cones-T2* profile for the superficial, middle and deep regions as well as a global ROI of the patellar sample. The UTE-Cones-AdiabT1ρ values show much reduced magic angle effect as compared to the regular UTE-Cones-T1ρ and UTE-Cones-T2*.
Figure 5 shows UTE-Cones-AdiabT1ρ profile, regular UTE-Cones-T1ρ profile and UTE-Cones-T2* profile for a human Achilles tendon sample. Much increased magic angle behavior was observed for the Achilles tendon for all the biomarkers. However, the UTE-Cones-AdiabT1ρ values still show the least angular dependence. The Achilles tendon has highly organized collagen fiber structure, representing the worst scenario in the magic angle study.
1. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med 1997; 38:863-867.
2. Regatte RR, Akella SVS, Lonner JH, Kneeland JB, Reddy R. T1r relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1r with T2. J Magn Reson Imaging 2006; 23:547-553.
3. Li X, Han ET, Ma B, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T1r mapping of knee cartilage in osteoarthritis. Magn Reson Med 2005; 54:929-936.
4. Mlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson 2004; 300-307.
5. Du J, Statum S, Znamirowski R, Bydder GM, Chung CB. Ultrashort TE T1rho magic angle imaging. Magn Reson Med 2013;69(3):682-687.
6. Shao H, Pauli C, Li S, Ma Y, Tadros AS, Kavanaugh A, Chang EY, Tang G, Du J. Magic angle effect plays a significant role in T1rho relaxation in articular cartilage. Osteoarthritis Cartilage 2017; 25:2022-2030.
7. Rautiainen J, Nissi MJ, Liimatainen T, Herzog W, Korhonen RK, Nieminen MT. Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection. Osteoarthritis and Cartilage 2014; 22:1444-1452.
8. Casula V, Autio J, Nissi MJ, Auerbach EJ, Ellermann J, Lammentausta E, Nieminen MT. Validation and optimization of adiabatic T1rho and T2rho for quantitative imaging of articular cartilage at 3T. Magn Reson Med 2017; 77:1265-1275.
9. Ma YJ, Carl M, Shao H, Tadros AS, Chang EY, Du J. Three‐dimensional ultrashort echo time cones T1ρ (3D UTE‐cones‐T1ρ) imaging. NMR Biomed. 2017;30.
10. Ma Y, Carl M, Searleman A, Lu X, Chang EY, Du J. Three dimensional adiabatic T1r prepared ultrashort echo time Cones (3D AdiabT1r UTE-Cones) sequence for whole knee imaging. Magn Reson Med 2018; 80:1429-1439.
11. Ma YJ, Lu X, Carl M, Zhu Y, Szeverenyi N, Bydder GM, Chang E, Du J. Accurate T1 mapping of short T2 tissues using a three-dimensional ultrashort echo time cones actual flip angle – variable TR (3D UTE-Cones AFI-VTR) method. Magn Reson Med 2018; 80:598-608.
12. Ma YJ, Zhao W, Wan L, Guo T, Searleman A, Jang H, Chang EY, Du J. Whole knee joint T1 values measured in vivo at 3T by combined 3D ultrashort echo time cones actual flip angle and variable flip angle methods. Magn Reson Med 2018 (in press).