b-tensor encoding enables the separation of isotropic and anisotropic tensors. However, little consideration has been given as to how to design a b-tensor encoding sampling scheme. In this work, we propose the first 4D basis for representing the diffusion signal acquired with b-tensor encoding. We study the properties of the diffusion signal in this basis to give recommendations for optimally sampling the space of axisymmetric b-tensors. We show, using simulations, that the proposed sampling scheme enables accurate reconstruction of the diffusion signal by expansion in this basis using a clinically feasible number of samples.
MD-dMRI Signal Basis and b-tensor Sampling Scheme
$$\frac{S}{S_0}(\mathbf{B})=\int{P(\mathbf{D})\exp(-\mathbf{B}:\mathbf{D})d\mathbf{D}}=\langle\exp(-\mathbf{B}:\mathbf{D})\rangle,$$ is the diffusion signal acquired with b-tensor encoding, where $$$P(\mathbf{D})$$$ is the DTD, $$$\mathbf{D},\mathbf{B}$$$ are second order symmetric positive-definite diffusion and b-tensors respectively, and $$$\mathbf{B}:\mathbf{D}=\sum_i\sum_jb_{ij}D_{ij}$$$. For a discrete set of diffusion tensor populations, $$\frac{S}{S_0}(\mathbf{B})=\sum_{d=1}^{N_{D}}w_{d}\exp(-\mathbf{B}:\mathbf{D}_{d}),$$ where $$$w_{d}$$$ is the proportion of tensor population $$$\mathbf{D}_{d}$$$ and $$$N_{D}$$$ is the number of populations. The axisymmetric diffusion tensor can be parameterised as5,6,
$$\mathbf{D}=\mathbf{R}(\theta,\phi){D_{iso}}\Bigg(\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}+D_\Delta\begin{pmatrix}-1&0&0\\0&-1&0\\0&0&2\end{pmatrix}\Bigg)\mathbf{R}(\theta,\phi)^T,$$ where $$$\mathbf{R}$$$ is a rotation operator. The b-tensor can be parametrised in terms of $$$(b_s,b_l,\Theta,\Phi)$$$2,6, $$\mathbf{B}=\mathbf{R}(\Theta,\Phi)\Bigg(\frac{b_{s}}{3}\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}+b_{l}\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}\Bigg)\mathbf{R}(\Theta,\Phi)^T.$$ Expanding $$$\frac{S}{S_0}(\mathbf{B})$$$, using the above parameterisation, gives a separable expression in $$$b_{s}$$$, and the other three parameters, $$$b_l,\Theta,\Phi$$$2:
$$\frac{S}{S_0}(\mathbf{B})=\sum_{d=1}^{N_{D}}w_{d}\exp(-b_{s}(D_{iso})_d)\exp(-b_{l}(D_{iso})_d)\exp(-2b_{l}(D_{iso})_{d}(D_\Delta)_{d}P_{2}(\cos\beta_d)),$$$$$\cos\beta_d=\cos{\Theta}\cos{\theta_d}+\sin{\Theta}\sin{\theta_d}\cos({\Phi-\phi_d})$$$. This enables $$$\frac{S}{S_0}(\mathbf{B})$$$ to be expanded in a separable and orthogonal 4D basis which is the product of a 1D basis for $$$b_{s}$$$ dimension and a 3D basis for $$$b_{l},\Theta$$$ and $$$\Phi$$$ dimensions. As $$$\frac{S}{S_0}(\mathbf{B})$$$ is a function of negative exponential of $$$b_{s}$$$, we use an exponential modulated with a Laguerre polynomial, which together form an orthogonal basis over $$$b_{s}$$$ dimension7. Similarly, we use the spherical Laguerre basis8, a 3D orthogonal basis with an exponential weighting function in the radial direction, for $$$b_{l},\Theta,\Phi$$$ dimensions, leading to expansion: $$\frac{S}{S_0}(b_{s},b_{l},\Theta,\Phi)=\sum_{p=0}^{P}\sum_{n=0}^{N}\sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell}c_{pn\ell m}Z_p(b_{s})B_{n\ell m}(b_l,\Theta,\Phi)$$ where $$$B_{n\ell m}(b_l,\Theta,\Phi)=X_n(b_l)Y^m_\ell(\Theta,\Phi)$$$ is the spherical Laguerre basis, with $$$X_n(b_{l})=\sqrt{\frac{n!}{{\zeta_l}^3(n+2)!}}\exp(\frac{-b_{l}}{2\zeta_{l}})L^2_n(\frac{b_l}{\zeta_{l}}),$$$ and $$$Z_p(b_{s}) = \frac{1}{\sqrt{\zeta_s}}\exp(\frac{-b_s}{2\zeta_{s}})L_{p}(\frac{b_{s}}{\zeta_{s}})$$$. $$$Y^m_\ell(\Theta,\Phi)$$$ are spherical harmonics of maximum degree $$$L$$$, $$$\zeta_{l},\zeta_{s}$$$ are scale factors and $$$N,P$$$ are maximum orders for $$$b_{l}$$$ and $$$b_s$$$ bases respectively. Coefficients $$$c_{pn\ell{m}}$$$ are defined by inner product $$$c_{pn\ell{m}}=\langle \frac{S}{S_0}(b_{s},b_{l},\Theta,\Phi),Z_p(b_s)B_{n\ell{m}}(b_{l},\Theta,\Phi)\rangle$$$. Due to the separability of this basis, we can design a separable transform,
$$c_{pn\ell{m}}=\sum_{j=0}^{J}w_jZ_p(b_{s}(j))\sum_{i=0}^{I}w_iX_n(b_{l}(i))\int_{\Theta=0}^{\pi}\int_{\Phi=0}^{2\pi}\frac{S}{S_0}(b_{s}(j),b_{l}(i),\Theta,\Phi)Y^m_\ell(\Theta,\Phi)\sin{\Theta}d\Theta{d}\Phi.$$ with Gauss-Laguerre quadrature9 used to choose the weights $$$w_j,w_i$$$, and sample locations $$$b_{s}(j),b_{l}(i)$$$ for the $$$b_{s}$$$ and $$$b_{l}$$$ dimensions. We use the scheme10,11 to place the samples in the angular dimension. For a band-limited signal, this quadrature enables exact reconstruction and efficient sampling with the number of samples equal to number of coefficients.
Alice Bates was supported by the Australian Research Council’s Discovery Projects funding scheme (Project no. DP170101897).
Alessandro Daducci is supported by the Rita Levi Montalcini, MIUR for the recruitment of young researchers.
1. D. Topgaard, Chapter 7 NMR methods for studying microscopic diffusion anisotropy, in Diffusion NMR of Confined Systems: Fluid Transport in Porous Solids and Heterogeneous Materials. The Royal Society of Chemistry, 226–259 (2017).
2. D. Topgaard, Multidimensional diffusion MRI, J. Magn. Reson. 275, 98–113 (2017).
3. C.-F. Westin et al., Q-space trajectory imaging for multidimensional diffusion MRI of the human brain, NeuroImage 135, 345–362 (2016).
4. J. P. de Almeida Martins and D. Topgaard, Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials, Scientific Reports 8 (2018).
5. S. Eriksson et al., NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution, J Chem Phys. 142, 104201 (2015).
6. J. P. de Almeida Martins and D. Topgaard, Two-dimensional correlation of isotropic and directional diffusion using NMR, Phys. Rev. Lett. 116, 087601 (2016).
7. R. H. Fick et al., Non-parametric graphnet-regularized representation of dMRI in space and time, Med. Image Anal. 43, 37–53 (2018).
8. B. Leistedt and J. D. McEwen, Exact wavelets on the ball, IEEE Trans. Signal Process. 60, 6257–6269 (2012).
9. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. Dover, New York: U.S. Government Printing Office 55 (1964).
10. A. P. Bates et al., An optimal dimensionality sampling scheme on the sphere with accurate and efficient spherical harmonic transform for diffusion MRI, IEEE Signal Process. Lett. 23, 15–19 (2016).
11. A. P. Bates et al., An optimal dimensionality multi-shell sampling scheme with accurate and efficient transforms for diffusion MRI, in Proc. IEEE Int. Symp. Biomed. Imaging, ISBI, Melbourne, Australia, 770–773 (2017).
12. A. Reymbaut and et al., The “magic DIAMOND” method: probing brain microstructure by combining b-tensor encoding and advanced diffusion compartment imaging, in Proc. Int. Soc. Magn. Reson. Med, Paris, France (2018).
13. B. Scherrer et al., Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND), Magn. Reson. Med. 76, 963–977 (2015).
14. B. Scherrer and et al., Decoupling axial and radial tissue heterogeneity in diffusion compartment imaging, in Springer International Publishing, Cham, 440–452 (2017).
15. S. N. Sotiropoulos et al., Advances in diffusion MRI acquisition and processing in the Human Connectome Project, NeuroImage 80, 125–143 (2013).