Hyperpolarized 129Xe pulmonary MRI is poised for clinical translation due in part to the clinical-relevance of 129Xe MRI biomarkers of lung disease. A rapid multi-b diffusion-weighted 129Xe MRI requires for clinical morphometry due to the challenges in acquiring a fully-sampled dataset during the relatively short 10-16sec breath-holds. Therefore, in this proof-of-concept evaluation, our objective was to measure morphometry estimates in a small group of control-rats as well as rats with early stage radiation-induced-lung-injury, and compare the stretched-exponential-model based morphometry estimates for three different cases: 1) fully-sampled k-space 2) 85% retrospectively under-sampled k-space, (acceleration factor (AF)=7), and 3) 90% retrospectively under-sampled (AF=10) k-space.
The authors wish to acknowledge the following sources of funding: Canadian Institutes for Health Research (Operating grant MOP-123431), Ontario Research Fund (Ontario Preclinical Imaging Consortium) and the Natural Sciences and Engineering Research Council. The authors would also like to thank Adam Farag, Paula Pflugfelder and Zack Zytner for assistance with MRI experiments and data analysis.
Authors thank Abascal, et all for providing Matlab code for the image reconstruction.
1 Ouriadov, A. et al.
Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient
anisotropy in chronic obstructive pulmonary disease. Magn Reson Med 70,
1699-1706, doi:10.1002/mrm.24595 (2013).
2 Paulin, G. A. et al. Noninvasive quantification of alveolar morphometry in
elderly never- and ex-smokers. Physiol
Rep 3, doi:10.14814/phy2.12583
(2015).
3 Chang, Y. V., Quirk, J. D. & Yablonskiy, D. A. In vivo lung morphometry with accelerated hyperpolarized (3) He diffusion MRI: a preliminary study. Magn Reson Med 73, 1609-1614, doi:10.1002/mrm.25284 (2015).
4 Chan, H. F., Stewart, N. J., Norquay, G., Collier, G. J. & Wild, J. M. 3D diffusion-weighted (129) Xe MRI for whole lung morphometry. Magn Reson Med 79, 2986-2995, doi:10.1002/mrm.26960 (2018).
5 Zhang, H. et al. Lung morphometry using hyperpolarized (129) Xe multi-b diffusion MRI with compressed sensing in healthy subjects and patients with COPD. Med Phys 45, 3097-3108, doi:10.1002/mp.12944 (2018).
6 Chan, H. F., Stewart, N. J., Parra-Robles, J., Collier, G. J. & Wild, J. M. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing. Magn Reson Med 77, 1916-1925, doi:10.1002/mrm.26279 (2017).
7 Parra-Robles, J., Marshall, H. & Wild, J. M. Characterization of 3He Diffusion in Lungs using a Stretched Exponential Model [abstract]. ISMRM 21st Annual Meeting, 0820 (2013).
8 Abascal, J. F. P. J., Desco, M. & Parra-Robles, J. Incorporation of prior knowledge of the signal behavior into the reconstruction to accelerate the acquisition of MR diffusion data. ArXiv e-prints 1702 (2017). <http://adsabs.harvard.edu/abs/2017arXiv170202743A>.
9 Westcott, A., Guo, F., Parraga, G. & Ouriadov, A. Rapid Single-breath Hyperpolarized Noble Gas MRI Based Biomarkers of Airspace Enlargement. J Magn Reson Imaging, doi:10.1002/jmri.26574 (2018).
10 Ouriadov, A., Lessard, E., Sheikh, K., Parraga, G. & Canadian Respiratory Research, N. Pulmonary MRI morphometry modeling of airspace enlargement in chronic obstructive pulmonary disease and alpha-1 antitrypsin deficiency. Magn Reson Med 79, 439-448, doi:10.1002/mrm.26642 (2018).
11 Yablonskiy, D. A. et al. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J Appl Physiol (1985) 107, 1258-1265, doi:10.1152/japplphysiol.00386.2009 (2009).
12 Ouriadov, A. et al. Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe Morphometry: Proof-of-concept demonstration in a rat model. Magn Reson Med 75, 2421-2431, doi:10.1002/mrm.25825 (2016).
13 Foster-Gareau, P., Heyn, C., Alejski, A. & Rutt, B. K. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49, 968-971, doi:10.1002/mrm.10417 (2003).
14 Kaushik, S. S. et al. Single-breath clinical imaging of hyperpolarized (129)Xe in the airspaces, barrier, and red blood cells using an interleaved 3D radial 1-point Dixon acquisition. Magn Reson Med 75, 1434-1443, doi:10.1002/mrm.25675 (2016).
15 Hersman, F. W. et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 15, 683-692, doi:10.1016/j.acra.2007.09.020 (2008).
16 Kirby, M. et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265, 600-610, doi:10.1148/radiol.12120485 (2012).
17 Sukstanskii, A. L. & Yablonskiy, D. A. Lung morphometry with hyperpolarized 129Xe: theoretical background. Magn Reson Med 67, 856-866, doi:10.1002/mrm.23056 (2012).
(A) *ANOVA between control and irradiated rats; SEM =stretched exponential model; AF = Acceleration Factor; LmD = specific to acinar duct mean diffusion length; Lm = mean linear intercept estimate.
(B)
Figure
2B. Relationships for mean linear
intercept (cylinder-model) with diffusion-scales (stretched-exponential-model).
Relationship for LmD
= mean-diffusion-length-scale with Lm
and MLI for irradiated (solid
squares) and control (solid circles) (R = 0.94; y = 1.8x – 150µm; p < 0.0006) rats. Histological
data (MRI-based LmD vs MLI) are shown for demonstration purposes
only. MLI = histological mean-linear-intercept.
Figure 3. Representative 129Xe MRI maps obtained with the SEM for the Control Rat (C4) with acceleration of 1, 7 and 10.
DDC = MRI-derived apparent diffusivity estimate; Alpha (α) = MRI-derived heterogeneity index; LmD = MRI specific to acinar duct mean-diffusion-length; Lm = MRI mean-linear-intercept estimate; AF = Acceleration Factor.
AF=1: DDC = .013cm2s-1, α = .80, LmD = 160µm, Lm = 130µm;
AF=7: DDC = .020cm2s-1, α = .80, LmD = 140µm, Lm = 110µm;
AF=10: DDC = .020cm2s-1, α = .80, LmD = 140µm, Lm = 110µm.
Figure 4. Representative 129Xe MRI maps obtained with the SEM for the Irradiated Rat (I-1) with acceleration of 1, 7 and 10.
DDC = MRI-derived apparent diffusivity estimate; Alpha (α) = MRI-derived heterogeneity index; LmD = MRI specific to acinar duct mean-diffusion-length; Lm = MRI mean-linear-intercept estimate; AF = Acceleration Factor.
AF=1: DDC = .013cm2s-1, α = .80, LmD = 130µm, Lm = 90µm;
AF=7: DDC = .013cm2s-1, α = .80, LmD = 135µm, Lm = 90µm;
AF=10: DDC = .013cm2s-1, α = .80, LmD = 135µm, Lm = 95µm.