Assessment of Diabetic Skeletal Muscle Metabolism Using Hyperpolarized 13C MR Spectroscopy

Jae Mo Park1, Sonal Josan1, Ralph Hurd2, James Graham3, Peter Havel4, David Bendahan5, Dirk Mayer6, Daniel Spielman1, and Thomas Jue6

1Radiology, Stanford University, Stanford, CA, United States, 2GE Healthcare, Menlo Park, CA, United States, 3Molecular Bioscience, UC Davis, Davis, CA, United States, 4Centre de Resonance Magnetique Biologique et Medicale, Marseille, France, 5Diagnostic Radiology and Nuclear Medicine, University of Maryland, MD, United States, 6Biochemistry, UC Davis, Davis, CA, United States

Target Audience Researchers and clinicians interested in type 2 diabetes.

Purpose Studies often ascribe alterations in the non-oxidative metabolic pathways as the primary mechanism behind the disrupted glucose homeostasis in type 2 diabetes mellitus (T2DM), in part because 13C MR spectroscopy (MRS) experiments have observed most of the reduced glucose utilization in T2DM corresponds with a lower glycogen synthesis rate. Any impairment in oxidative metabolism appears to contribute negligibly. Nevertheless, some researchers have hypothesized that a defective or insufficient mitochondrial function can still play a potentially role in T2DM pathogenesis. The relative contribution of the mitochondrial dysfunction in T2DM, however, remains unclear. Recently a new rat model (UCDT2DM), which develops diabetes with age and obesity, has presented a unique opportunity to investigate the altered biochemical mechanism in T2DM. We have performed in vivo experiments using hyperpolarized [1-13C]lactate (Lac), [2-13C]pyruvate (Pyr), and dichloroacetate (DCA) to examine in control (CRL) and T2DM skeletal muscle the pyruvate dehydrogenase (PDH) and tricarboxylic acid (TCA) cycle, which reflects oxidative metabolism activity. The results indicate that control vs. T2DM muscle reacts differently with the Lac, Pyr, and DCA, consistent with an altered oxidative metabolism in the pathogenesis of T2DM.

Methods Sprague-Dawley (SD) rats with UCDT2DM (459-640g, n=8) and age-/weight-matched CRL SD rats (517-681g, n=9) were anesthetized and scanned using a 3T GE clinical MR scanner and a 13C surface coil (Ø = 28mm, placed on top of right rectus femoris). Immediately after an injection of 40-mM hyperpolarized [1-13C]Lac bolus, 13C MR signal was acquired from CRL (n=6) and UCDT2DM rats (n=5), and 3 of the UCDT2DM rats were additionally scanned following another 40-mM Lac injection 1h after a DCA infusion (200mg/kg). A separate group of animals were scanned after injecting 80-mM hyperpolarized [2-13C]Pyr (n=3 for UCDT2DM and n=3 for CRL). For all scans, dynamic free induction decay (FID) sequence (10° hard pulse, temporal resolution=3s, spectral width/points=10kHz/4096, Tacb=4 min) was used to acquire time-resolved 13C MR spectroscopic data. Metabolite ratios relative to total carbon (tC) and apparent conversion rate constants using a modified multi-site exchange model were used as metrics to analyze [1-13C]Lac data. For [2-13C]Pyr analysis, metabolite ratios as compared to the integrated mitochondrial metabolites were compared between CRL and UCDT2DM rats.

Results and Discussion Alanine (Ala, 0.15±0.02 for T2DM and 0.15±0.01 for CRL) and Pyr (0.027±0.004 for T2DM and 0.032±0.002 for CRL) metabolites were compared between CRL and UCDT2DM rats. We have performed in vivo experiments using hyperpolarized [1-13C]lactate (Lac), [2-13C]pyruvate (Pyr), and dichloroacetate (DCA) to examine in control (CRL) and T2DM skeletal muscle the pyruvate dehydrogenase (PDH) and tricarboxylic acid (TCA) cycle, which reflects oxidative metabolism activity. The results indicate that control vs. T2DM muscle reacts differently with the Lac, Pyr, and DCA, consistent with an altered oxidative metabolism in the pathogenesis of T2DM.

Conclusion The metabolism of hyperpolarized [1-13C]Lac in the muscle was different in UCDT2DM as compared to CRL rats, especially with respect to PDH activity. The contrasting change in PDH activity with DCA suggests a contribution of oxidative metabolism impairment in diabetes and a potential role for PDH activation to restore glucose homeostasis.


Acknowledgements NIH: EB009070, AA005965, AA0018681, AA13521-INIA, P41 EB015891, France Berkeley Fund, and GE Healthcare.