In vivo QSM in early-stage Alzheimer’s disease reveals magnetostatic alterations in the basal ganglia and beyond

Julio Acosta-Cabronero1, Guy B Williams2, Arturo Cardenas-Blanco1, and Peter J Nestor1

1Brainplasticity & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany, 2Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

Introduction. Studying brain iron in Alzheimer’s disease (AD) is particularly relevant because iron overload is a well-known feature; it is thought that in neurodegenerative diseases, iron homeostasis is seriously disrupted causing iron levels to increase. Biological iron, however, is multi-faceted and as such, it might hold several roles in neurodegeneration: iron is known to be a component of neuritic plaques and neurofibrillary tangles, and it has been suggested that an elevated iron level might constitute ideal proliferation and perpetuation environments for β-amyloid aggregation and neurotoxicity. The ability to accurately measure iron levels in vivo, therefore, may offer important mechanistic insights to help unravel the sequence of events that leads to neurodegeneration. If regional changes in iron concentration in the AD brain were found to be sufficiently robust, in vivo measurement could even offer a diagnostic tool. Methods. Subjects. N=8 patients (age: 72±6; MMSE: 22±4) with early-stage probable AD according to NINCDS-ADRDA criteria and N=8 matched controls (age: 70±5) were recruited. SWI. Experiments were performed on a Siemens Trio 3T system with a 12-channel TIM head-coil using a fully flow- and motion-compensated FLASH sequence: TR/TE/TL=3500ms/20ms/17°; matrix, 256×240; 72 (+16 for oversampling) axial slices with voxel resolution of 1×1×2 mm; the total scan time was 7’ (GRAPPA=2). QSM. Brain masks were derived from the magnitude image using BET2 (f=0.2) with further erosion by spatial convolution with a 6-voxels-wide cubic kernel. The brain-extracted magnitude image was then RF-bias corrected (N4-ITK) and normalised to infer a noise-weighting matrix, W. Phases were unwrapped with a direct Laplacian method, from which local field inductions, B2, were estimated applying the PD principle. An in-house implementation of the MEDI approach was used for conditioning the field-forward susceptibility calculation: X = arg min λ/2 ||W * (DX - B2) + (M - G)||2 + ||λ||2, where the action of a total-variation operation, G, masked by M, –a sparsifying matrix that suppresses the 30% steepest magnitude gradients–further compartmentalises the fidelity-constrained solution; λ is the regularisation parameter (10 values were used, 200 < λ < 10,000) and D is the magnetic dipole convolution operator. Regularised solutions were finally normalised to a posterior ventricular region. Structural MRI. 3D MPRAGE volumes were also acquired to resolve independently the underlying anatomy–with TR/TE/TI=2300ms/2.86ms/900ms/90°, 192×192×144 matrix and 1.25×1.25×1.25 mm voxel size; scan time was 7’23”. Rigid (SWI magnitude to MPRAGE) and non-linear (MPRAGE to MNI152) coregistrations were performed using SPM8. In addition, deep GM structures were segmented using FSL-FIRST. Stats. Median magnetic susceptibility values for each ROI were cross-sectionally compared (AD patients versus controls) using Mann–Whitney U tests. For whole-brain analysis, spatially-normalised QSM reconstructions were smoothed with an 8-mm isotropic FWHM Gaussian kernel prior to FSL-randomise testing (12,870 permutations) with TFCE enabled. Results were shown at TFCE-P<0.05 (corrected for multiple comparisons). Results. Parameter selection. The most faithful (to the measured data) solution was achieved with λ = 1250. Regional study. Both putamina (right slightly smaller than left) were highly abnormal (AD>controls, P<0.005). The left amygdala and right caudate also showed increased magnetic susceptibilities, though the effects were less pronounced (P<0.05). Cluster-based analysis. QSM alterations (AD>controls) were found in GM and WM tissue (see figure), specifically in the putamen bilaterally, in the amygdala and in posterior cerebral areas. The most intense clusters were found–with relative confuence–in temporo-parietal WM and more-scattered-in posterior parietal and occipital regions. Furthermore, widespread clusters of abnormality were also found in occipito-parietal GM and temporoparietal GM and WM regions. The reverse contrast did not yield any significant cluster at the present threshold level. Discussion. This study offers a proof of concept of QSM’s strong potential to yield new insights in degenerative brain diseases such as AD. The most striking deep GM feature is a marked increase in magnetic susceptibility in the putamen. The caudate nucleus and the amygdala showed similar behaviours though differences were less statistically prominent. Ferritin is found in the striatum by the ROI analysis. Group sizes are small, however, thus the remaining statistical effects identified beyond deep GM need to be interpreted with a little caution until replicated. Nevertheless, it is reassuring that the whole-brain analysis could identify the striatal lesion observed by ROI extraction; that the reverse contrast (controls-AD) was completely negative; and that certain blobs appeared to be following anatomical boundaries (e.g. y=-35mm) – they all argue that the results are not spurious. It is interesting that the most extensive and significant changes were found in the posterior temporo-parietal WM, which has the greatest predilection for lobar haemorrhage and microbleeds leading to the possibility that QSM may be detecting signals related to amyloid angiopathy. Such speculation, of course, will need confirmation in future clinical studies. In contrast to WM, little convincing evidence was found for changes in the cortical ribbon though this, too, should be explored further in larger studies.

References. 1. Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, amyloid angiopathy. Such speculation, of course, will need confirmation in future clinical studies. 2. Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, amyloid angiopathy. Such speculation, of course, will need confirmation in future clinical studies. 3. Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, amyloid angiopathy. Such speculation, of course, will need confirmation in future clinical studies.