Amide Proton Transfer Imaging in Grading Diffuse Gliomas: Comparison with Contrast-enhanced and Diffusion-weighted MR Imaging

Osamu Togao1, Takashi Yoshiura1, Jochen Keupp2, Akio Hiwatashi1, Koji Yamashita1, Kazufumi Kikuchi1, Yuriko Suzuki1, Koji Sagiyama4, Masaya Takahashi4, and Hiroshi Honda1

1Clinical Radiology, Graduate School of Medical Science, Kyushu University, Fukuoka, Fukuoka, Japan, 2Philips Research Europe, Hamburg, Germany, 3Philips Electronics Japan, Tokyo, Japan, 4Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States

Target audience: Researchers and clinicians interested in CEST/APT imaging.

Purpose: Amide proton transfer (APT) imaging employs the proton exchange between bulk water and the amide protons (-NH) in endogenous mobile proteins and peptides, imaged by a chemical exchange saturation transfer (CEST) technique. Previous reports demonstrated that APT was useful in grading diffuse gliomas, differentiation between tumor and radiation necrosis, and evaluation of therapeutic effects. We reported that APT SI increased with glioma grade in patients (grade II, 2.1 ± 0.4%, grade III, 3.2 ± 0.9%, grade IV, 4.1 ± 1.0%) at 3T. Currently, Gd-enhanced diffusion-weighted (DW) imaging has been routinely used for grading in the clinical setting. Therefore, the purpose of our study is to prospectively assess the diagnostic performance of APT imaging for grading of diffuse gliomas by comparisons with Gd-enhanced and DW imaging.

Methods: Subjects: Consecutive 46 patients with diffuse glioma (47.7±18.6 year-old, 21 males and 25 females) who underwent subsequent surgical resection or biopsy were included in the prospective study. Histological types of gliomas are as follows: 6 astrocytoma; 3 oligodendrogliomas; 1 oligoastrocytoma, 4 anaplastic astrocytomas; 6 anaplastic oligodendroglialomas; 2 anaplastic oligoastrocytoma, 24 glioblastoma multiforme (GBMs).

MRI: MRI was conducted in a 3T clinical scanner (Achieva TX 3.0T, Philips Healthcare, NL) using an 8-channel head coil for signal reception and 2-channel parallel transmission via the body coil. Acquisition software was modified to alternate the operation of the two transmission channels during the RF saturation pulse for an RF duty-cycle of 100% and to allow a special RF shimming for the saturation homogeneity of the alternated pulse (identical mean B1 level per channel). Saturation pulse: 40×50ms sinc-gaussian elements, B1=2.0 μT, T1sat=2.0s. 2D fast spin-echo sequences with driven equilibrium refocusing were acquired separately (identical geometry, 2D GRE, TR=500ms, TE=10ms, Gd=0.01mol/kg). In addition, contrast enhancement (CE) on post-contrast T1-weighted imaging (2D spin-echo, TR=500ms, TE=10ms, Gd=0.01mol/kg) of the tumor was visually graded into a 5-point scale, and fixed area of 0.36 cm2 were placed to measure maximum APT SI in the solid component of the gliomas. In addition, contrast enhancement (CE) on post-contrast T1-weighted imaging (2D spin-echo, TR=500ms, TE=10ms, Gd=0.01mol/kg) of the tumor was visually graded into a 5-point scale, and minimum apparent diffusion coefficients (ADC) within solid components of the tumor were determined in 4 ROIs on DW imaging (single-shot spin-echo EPI, b=0,1000, mono-exponential fitting for ADC).

Results and Discussion: HGG (grade III and IV) showed greater CE (P<0.001), lower ADC (P=0.01) and higher APT signal (P<0.0001) than LGG (grade II). The area under curve (AUC), cutoff value, sensitivity, and specificity obtained in the ROC analysis for discriminating HGG from LGG are summarized in Table 1. The ROC analyses demonstrated that the APT signal provided the best AUC values in discriminating HGG from LGG (Figure 1 and Table 1) and showed the highest AUC among the three parameters in the ROC analyses in differentiating the grades (II vs. III, II vs. IV, III vs. IV) among these three parameters (CE, ADC, APT). In the logistic regression analysis including all the three parameters, APT signal showed the largest Wald Chi-square (P=0.02) and was the only significant factor among these parameters. Combination of all the three parameters improved AUC (0.95) in the ROC analysis compared with CE alone (0.85, P<0.05) and ADC alone (0.82, P<0.05). A representative case in which only APT imaging is useful in grading is shown in Figure 2. APT imaging is based on the new contrast from mobile proteins and peptides in tissue and may provide different/additional information in grading gliomas and complement conventional imaging methods.

Conclusion: APT imaging showed high diagnostic performance to predict histopathological grades of diffuse gliomas compared with CE and DW imaging. APT has an additive value to other MR methods and is useful in accurate glioma grading.


Table 1: Summary of the ROC analysis in differentiating HGG (grade III and IV) from LGG (grade II).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AUC</th>
<th>Cutoff Value</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>0.854</td>
<td>2</td>
<td>75.0%</td>
<td>100%</td>
</tr>
<tr>
<td>ADC</td>
<td>0.822</td>
<td>1.16 x 10^-7 mm^2/s</td>
<td>80.6%</td>
<td>80.0%</td>
</tr>
<tr>
<td>APT</td>
<td>0.931</td>
<td>2.63%</td>
<td>91.7%</td>
<td>80.0%</td>
</tr>
</tbody>
</table>

Figure 1: ROC analysis in differentiating HGG (grade III and IV) from LGG (grade II). APT achieved the best AUC among the 3 parameters. The combination of all the 3 parameters improved AUC compared with CE and ADC alone.

Figure 2: Anaplastic oligoastrocytoma, Grade III (HGG). The lesion in the right frontal lobe shows no contrast enhancement, high ADC and slightly high APT signal compared with the cutoff. Only APT signal is suggestive of HGG.