The Transfer Constant K^{trans} in Glioblastomas is Limited by Permeability and not Perfusion

Atle Bjornerud1,2, A. Gregory Sorensen3,4, Patrick Y Wen5, Tracy T Batchelor6,7, Rakesh K Jain6, and Kyrre E Emblem1,3

1The Intervention Centre, Oslo University Hospital, Oslo, Norway, 2Dept of Physics, University of Oslo, Oslo, Norway, 3Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States, 4Siemens Healthcare Health Services, Pennsylvania, United States, 5Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center and Harvard Medical School, Massachusetts, United States, 6Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, United States, 7Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, United States

TARGET AUDIENCE: Clinicians, physicists and researchers involved in DSC imaging studies and in the interpretation of DSC-derived brain tumor perfusion data.

PURPOSE: Tumor perfusion (CBF) and capillary permeability transfer constant (K^{trans}) have been proposed as sensitive biomarkers to monitor the effect of vascular-targeting and anti-angiogenic agents. However, these two metrics are not physiologically independent parameters which may complicate their interpretation in clinical data. Changes in K^{trans} may represent change in permeability surface area (PS) product, change in CBF or a combination of the two. Given the increasing interest of using these metrics as target biomarkers for clinical anti-angiogenic studies in patients with glioblastomas, any interaction between K^{trans} and CBF should be established.

METHODS: Both K^{trans} and CBF were estimated directly from the tissue residue function derived from dynamic contrast susceptibility (DSC) MRI, as previously described. From this, the initial voxel-wise contrast agent extraction fraction, $E = \frac{K^{\text{trans}}}{\text{CBF}} = 1 - \exp(-\text{PS}/\text{CBF})$ was estimated. The tumor value of E thus provides a direct estimate of the inter-dependence of K^{trans} and CBF because K^{trans} = CBF when $E > 1$ and K^{trans} = PS when $E < 1$. Independence of K^{trans} and CBF thus requires $E < 1$. In this retrospective study, we included 30 patients with recurrent glioblastomas enrolled in a Phase II clinical trial of cediranib (clinicaltrials.gov, NCT00305656), an orally administered [45mg/kg/day] pan-VEGF receptor tyrosine kinase inhibitor.

Gadolinium-based (Gd) DSC MRI was performed at 3 T (Siemens Magnetom Trio) prior to therapy onset (days -5 and -1) and repeated at days +1, +28, +56 and +112, as previously reported. Tumor regions-of-interests were outlined on the post-contrast axial T1-weighted images by an experienced neuroradiologist and co-registered to DSC space using Statistical Parametric Mapping (SPM8). Values of E, CBF and K^{trans} at baseline (averaged over days -5 and -1) were compared using Spearman correlation (ρ). The kinetic analysis was performed in nordicICe (NordicNeuroLab AS, Bergen, Norway).

RESULTS AND DISCUSSION: By visual inspection, values of E before cediranib therapy were regionally and spatially different from CBF and K^{trans} (Fig. 1a-d). The average (±SD) whole tumor E was 6% (±3.5%). E was negatively correlated with tumor CBF ($\rho = -0.51; \text{P} < 0.01$; Fig. 1e) and positively correlated with tumor K^{trans} ($\rho = 0.45; \text{P} < 0.05$; Fig. 1f). There was no correlation between K^{trans} and CBF ($\rho = 0.15$), indicating that K^{trans} is not perfusion limited in glioblastomas.

During cediranib therapy, the temporal progression of whole tumor E was found to follow the same trend as for K^{trans} and with no difference between patients with different CBF trajectories (Fig. 1g-h). This observation confirms that E is dependent on the cediranib-induced decrease in vascular permeability regardless of perfusion.

CONCLUSION: We find the initial contrast agent extraction fraction in glioblastomas using conventional gadolinium chelates to be on average below 10% suggesting contrast agent extravasation is limited by permeability and not perfusion. K^{trans} and CBF derived from DSC MRI can be considered independent parameters in glioblastomas.

References