Quantitative Assessment of Glucose Metabolism in Rat Brains using In Vivo Deuterium Magnetic Resonance

Ming Lu1, Xiao-Hong Zhu1, Yi Zhang1, Gheorghe Mateescu2,3, and Wei Chen1

1Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States, 2Case Center for Imaging Research and Radiology Department, Case Western Reserve University, Cleveland, Ohio, United States, 3Chemistry, Case Western Reserve University, Cleveland, Ohio, United States

Introduction Cerebral glucose metabolism is of importance for brain function since glucose is the major fuel for energy production in the form of ATP, which is essential to maintain electrophysiological activity including neuronal firing and signaling. Simultaneous assessment of cerebral glucose consumption rate (CMRglc) and major metabolic fluxes, such as the TCA cycle (Vtca), α-ketoglutarate/glutamate exchange (Vγ) and oxygen consumption (CMRO2), is crucial to understand neuroenergetics under various physiological and pathological conditions. However, such simultaneous measurement has not been possible due to the complexity of brain glucose metabolism and the limitations of experimental measuring. For decades, in vivo 13C NMR spectroscopy has been the unique tool to investigate brain metabolic fluxes (Vtca and Vγ) noninvasively by analyzing 13C-labeled glutamate time courses (1) with particularly complex metabolic modeling (2). 18FDG-PET imaging has been the gold standard for CMRglc quantification though a radioactive agent is needed. Deuterium NMR has been applied in the study of gluconeogenesis through plasma samples (3). Mateescu et al. had recently demonstrated the first in vivo attempt of Deuterium Magnetic Resonance Imaging (DMR) in mice for assessing mitochondrial respiration (4).

In this study, a novel DMR approach having a potential to simultaneously measure CMRglc and major metabolic fluxes (such as Vtca and Vγ) was proposed and examined in rat brains at 16.4 T. Preliminary results demonstrate the feasibility and sensitivity of this DMR method in assessing cerebral glucose metabolism.

Method Eight male Sprague Dawley rats (BW=350±47 g) were anesthetized by 2% isoflurane and prepared for in vivo DMR scans. The rat femoral arteries and veins were cannulated for blood sampling and physiological monitoring and deuterated glucose/morphine infusion. All MR experiments were conducted at 16.4 T/26 cm scanner (Varian/VNMR) using 1H/2H surface coil, which was placed over the rat brain and tuned to 107 MHz for 1H scan. A single-pulse-acquire sequence was applied to obtain dynamic 1H spectra from the rat brain with the following parameters: 3 kHz spectral width, 512 points for each FID, 300 ms TR with 50 averages (15 s per spectrum) and 520 repetitions (130 min). For each rat, 10 min baseline spectra were acquired followed by 2 min infusion of 400 mg D-Glucose-6,6-d2 (d66, Sigma-Aldrich) dissolved in 2.5 mL saline. To test the sensitivity of DMR in response to altered metabolism rates, 4 of the 8 rats were switched from isoflurane inhalation to constant morphine infusions (25mg/kg/hr) for 10 min after DMR acquisitions. A 13-Hz linebroadening was used to enhance SNR. A spherical phantom containing 5 mM deuterated glucose was also prepared for identifying chemical shifts of water and glucose resonance peaks and validating glucose quantification. All resonance signals (except for the small lactate peak) were fitted using a MATLAB-based program for quantification. The concentrations of deuterated glucose and/or glutamate/glutamine (Glx) were quantified by normalizing their fitted peak integrals to that of 5.2 mM vs. the known 5 mM, which indicates the reliability of the quantification method. As shown in Fig. 1, following the brief infusion of deuterated glucose, four well resolved resonance peaks (water, glucose, Glx and lactate) were detected in the rat brain. Thus, their changes can be monitored via the δH spectra during dynamic scanning. As shown in Fig. 2, the glucose consumption and labeled Glx accumulation rates were found significantly increased in the morphine group when compared with its isoflurane control. Delayed Glx appearance and onset of glucose decay were also observed in the isoflurane group. All of these observations indicate an accelerated glucose metabolism with increased CMRglc, Vtca and Vγ under morphine stimulation, which is also consistent with the increased heart rate (416±10 vs. 340±20 bpm with isoflurane) and mean blood pressure (141±12 vs. 111±12 mmHg). In vivo Vγ value of deuterated water was 0.36±0.01 s, while the phantom Vγ values of deuterated water and glucose were 0.45 and 0.055 s, respectively.

Discussion and Conclusion This study demonstrates that dynamic DMR is particularly well suited for in vivo, quantitative assessment of glucose metabolism in the rat brain. The excellent spectral quality and sensitivity makes the in vivo application of localized DMR possible. When compared with 13C MRS, the much shorter T1 relaxation time of deuterated glucose (although phantom data only) provides an additional substantial gain of NMR sensitivity for detection via more signal averaging. Its SNR can be further improved by using a short TR and Ernst angle. Importantly, the excellent sensitivity and temporal resolution of DMR also ensures the detection of rapid changes of labeled-metabolites, such as the delayed appearance of Glx under isoflurane condition in this study (Fig. 2). This observation may explain the difficulties of hyperpolarized 13C technique with pruvate infusion aiming to detect the increasing glutamate and/or glutamine labeling in animal brain under anesthesia condition. The slow turnover processing for labeling carbon isotope into Glx (> 2 minutes, see Fig. 2) competes with its 13C T1 relaxation time that determines the signal detection time window with sufficient hyperpolarization and detection sensitivity, thus, missing the opportunity for detecting the hyperpolarized Glx signal in vivo.

In summary, the results of this work indicate that in vivo DMR approach is robust and reliable for simultaneously detecting changes in glucose and Glx concentrations in the rat brain with excellent sensitivity. When combined with metabolic modeling, the simultaneous measurement of glucose consumption rate, TCA cycle flux and α-ketoglutarate/glutamate exchange rate can be achieved in animal and human brains. It also provides an opportunity for in vivo study of coupling relationship between aerobic and anaerobic glucose metabolisms in the brain.

Acknowledgement NIH grants NS41262, NS57560, NS70839, P41 RR008079, P41 EB015894, P30 NS076408, S10 RR025031; Keck foundation.