Quantitative Vessel-Encoded Arterial Spin Labeling Reveals Collateral Blood Flow in Hyper-Acute Stroke Patients

Thomas W Okell¹, George WJ Harston², Michael A Chappell³, Fintan Sheerin⁴, Martino Cellerini⁵, Stephen J Payne⁶, James Kennedy⁷, and Peter Jezzard¹
¹FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom, ²Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom, ³IBME, Department of Engineering Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom, ⁴Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire, United Kingdom, ⁵Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom

Introduction: Collateral flow is known to be crucial for sparing brain tissue in stroke patients⁴, but most non-invasive imaging modalities are unable to visualize this phenomenon. In a recent consensus statement, serial imaging studies of stroke patients using techniques capable of assessing collateral flow and hemodynamics have been prioritized⁵. Recently it has been shown that multi-postlabeling delay vessel-encoded pseudocontinuous arterial spin labeling (VEPCASL)⁶ is capable of generating quantitative maps of cerebral blood flow (CBF) and bolus arrival time (BAT) arising from each major brain-feeding artery separately, with signal-to-noise ratio equivalent to standard ASL techniques⁷. Its non-invasive non-contrast nature make it ideally suited to repeated imaging studies. In this work we present the first use of this technique to serially study hyper-acute stroke patients, demonstrating its utility for observing evolving collateral flow patterns and hemodynamics.

Methods: Acute ischemic stroke patients (within six hours of symptom onset) were recruited and scanned at 3T under a protocol approved by a national ethics committee. Repeat scans at 1 day and 1 month were also performed. Imaging sequences included VEPCASL perfusion imaging as previously described⁸ (EPI readout, voxel size 3.4x3.4x4.5 mm, six postlabeling delays from 0.25s–1.5s, 96 volumes, 6.5 mins, separate labeling of the right and left internal carotid arteries, ICAs, and vertebral arteries, VAs), T1-weighted structural imaging and fluid attenuated inversion recovery (FLAIR) at 1 month to assess the final infarct. Patients with lacunar stroke were excluded from this analysis, leaving 17 patients with VEPCASL imaging. 14% of the data sets had severe motion artefacts and were also excluded.

Results: Figures 1 and 2 show example data from two patients with initial perfusion deficits in the right middle cerebral artery (RMCA) territory. In both cases regions with collateral flow appeared to be spared from infarction and the vascular territories reorganized following recanalization. Such collateral flow to the affected region was observed in 29% of patients. In addition, the BAT maps demonstrated delayed blood arrival around the lesion compared to a mirrored region of interest on the contralateral side at the initial scan (p = 0.03), which persists at 1 month (p = 0.02).

Discussion: Multi post-labeling delay VEPCASL perfusion imaging appears to be a promising technique for serially imaging collateral flow patterns and studying hemodynamics in acute stroke patients. The sparing of tissue from infarction by collateral flow and reorganization of vascular territories over time warrants further study in a larger cohort of patients. The considerably delayed blood arrival found around the perfusion deficit highlights the importance of collecting multiple post-labeling delay data to accurately quantify CBF. In addition, the ability to generate BAT maps may provide extra information on cerebral hemodynamics in this patient group⁹. Elevated BAT levels might be indicative of other stenoses or partial occlusions in nearby arterial branches as well as delayed arrival due to collateral flow. This technique does have a number of limitations, however: collateral flow originating from a different branch of the same tagged artery will not be separately resolved, unless the labeling plane is repositioned to encompass a greater number of arterial branches⁶; very delayed blood arrival will not be visualized due to T1 decay; and motion artefacts were problematic in some patients, although we hope to alleviate this in future work using prospective motion correction. We hope this technique will prove useful in understanding the pathophysiology of acute stroke and has potential as a diagnostic and prognostic tool in this patient group.

References:
1. Liebeskind DS. Stroke 2003; 34:2279-84.
6. Okell TW et al. ISMRM 2012:#582.

Acknowledgements: Funding support from the Oxford NIHR Biomedical Research Centre, Dunhill Medical Trust and the Centre of Excellence for Personalized Healthcare funded by the Wellcome Trust and EPSRC